邊長(zhǎng)為a的等邊三角形內(nèi)任一點(diǎn)到三邊距離之和為定值,則這個(gè)定值為
3
2
a
;推廣到空間,棱長(zhǎng)為a的正四面體內(nèi)任一點(diǎn)到各面距離之和為
 
考點(diǎn):類比推理
專題:推理和證明
分析:由平面圖形的性質(zhì)向空間物體的性質(zhì)進(jìn)行類比時(shí),常用的思路有:由平面圖形中點(diǎn)的性質(zhì)類比推理出空間里的線的性質(zhì),由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),由平面圖形中面的性質(zhì)類比推理出空間中體的性質(zhì).固我們可以根據(jù)已知中平面幾何中,關(guān)于線的性質(zhì)“正三角形內(nèi)任意一點(diǎn)到三邊距離之和是一個(gè)定值”,推斷出一個(gè)空間幾何中一個(gè)關(guān)于面的性質(zhì).
解答: 解:在邊長(zhǎng)為a的正三角形內(nèi)任一點(diǎn)到三邊的距離之和為定值
3
2
a

在一個(gè)正四面體中,計(jì)算一下棱長(zhǎng)為a的三棱錐內(nèi)任一點(diǎn)到各個(gè)面的距離之和,
如圖:
由棱長(zhǎng)為a可以得到BF=
3
2
a
,BO=AO=
6
3
a-OE,
在直角三角形中,根據(jù)勾股定理可以得到
BO2=BE2+OE2,
把數(shù)據(jù)代入得到OE=
6
12
a,
∴棱長(zhǎng)為a的三棱錐內(nèi)任一點(diǎn)到各個(gè)面的距離之和4×
6
12
a=
6
3
a,
故答案為:
6
3
a
點(diǎn)評(píng):本題是基礎(chǔ)題,考查類比推理及正四面體的體積的計(jì)算,轉(zhuǎn)化思想的應(yīng)用,考查空間想象能力,計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x+1|+|x-2|.
(1)作出函數(shù)y=f(x)的圖象;
(2)解不等式|x+1|+|x-2|>5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,M,N分別為PA、BC的中點(diǎn),證明MN∥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x2-mx+3,當(dāng)x∈(-2,+∞)時(shí)是增函數(shù),當(dāng)x∈(-∞,-2)時(shí)是減函數(shù),則f(1)=( 。
A、-3B、13
C、7D、含有m的變量

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則該幾何體為。ā 。
A、三棱柱B、三棱錐
C、圓錐D、四棱錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)兩點(diǎn)A(-3,0),B(3,8).
(1)求直線l的方程.
(2)求以點(diǎn)C(-1,1)為圓心,且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

古希臘人常用小石頭在沙灘上擺成各種形狀來(lái)研究數(shù),如圖:則第20個(gè)圖共有
 
個(gè)黑點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(x,y)在映射f下的像是(x+y,x-y),則(6,-3)在f下的原像為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案