【題目】已知極點與直角坐標系的原點重合,極軸與x軸的正半軸重合,圓C的極坐標方程是ρ=asinθ,直線l的參數(shù)方程是 (t為參數(shù))
(1)若a=2,直線l與x軸的交點是M,N是圓C上一動點,求|MN|的最大值;
(2)直線l被圓C截得的弦長等于圓C的半徑的 倍,求a的值.
【答案】
(1)解:當a=2時,圓C的直角坐標方程為x2+y2=2y,即x2+(y﹣1)2=1.∴圓C的圓心坐標為C(0,1),半徑r=1.
令y= =0得t=0,把t=0代入x=﹣ 得x=2.∴M(2,0).
∴|MC|= = .∴|MN|的最大值為|MC|+r=
(2)解:由ρ=asinθ得ρ2=aρsinθ,∴圓C的直角坐標方程是x2+y2=ay,即x2+(y﹣ )2= .
∴圓C的圓心為C(0, ),半徑為| |,
直線l的普通方程為4x+3y﹣8=0.
∵直線l被圓C截得的弦長等于圓C的半徑的 倍,
∴圓心C到直線l的距離為圓C半徑的一半.
∴ =| |,解得a=32或a=
【解析】(1)求出圓C的圓心和半徑,M點坐標,則|MN|的最大值為|MC|+r;(2)由垂徑定理可知圓心到直線l的距離為半徑的 ,列出方程解出.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某地有三家工廠,分別位于矩形ABCD的頂點A,B以及CD的中點P處,已知AB=20km,CB=10km,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD內(nèi)(含邊界),且與A,B等距離的一點O處建造一個污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長為km.
(I)設(shè),將表示成的函數(shù)關(guān)系式;
(II)確定污水處理廠的位置,使三條排污管道的總長度最短,并求出最短值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數(shù)據(jù)如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的濃度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)求關(guān)于的線性回歸方程;(提示數(shù)據(jù): )
(2)(I)利用(1)所求的回歸方程,預(yù)測該市車流量為12萬輛時的濃度;(II)規(guī)定:當一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為優(yōu);當一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當天車流量不超過多少萬輛?(結(jié)果以萬輛為單位,保留整數(shù))參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱臺ABC﹣A1B1C1中,平面α過點A1 , B1 , 且CC1∥平面α,平面α與三棱臺的面相交,交線圍成一個四邊形.
(Ⅰ)在圖中畫出這個四邊形,并指出是何種四邊形(不必說明畫法、不必說明四邊形的形狀);
(Ⅱ)若AB=8,BC=2B1C1=6,AB⊥BC,BB1=CC1 , 平面BB1C1C⊥平面ABC,二面角B1﹣AB﹣C等于60°,求直線AB1與平面α所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+(﹣1)n ,其中n∈N* , a為常數(shù).
(Ⅰ)當n=2,且a>0時,判斷函數(shù)f(x)是否存在極值,若存在,求出極值點;若不存在,說明理由;
(Ⅱ)若a=1,對任意的正整數(shù)n,當x≥1時,求證:f(x+1)≤x.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有6個人排成一排照相,由于甲乙性格不合,所以要求甲乙不相鄰,丙最高,要求丙站在最中間的兩個位置中的一個位置上,則不同的站法有( )種.
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,sin2A+sin2B+sin2C=2 sinAsinBsinC,且a=2,則△ABC的外接圓半徑R= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(2,2),圓C:x2+y2-8y=0,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標原點.
(1)求M的軌跡方程;
(2)當|OP|=|OM|時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是( )
A.f(x)=x2
B.f(x)=
C.f(x)=ex
D.f(x)=sinx
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com