【題目】已知向量 =(sinx,﹣1), =(2cosx,1).
(1)若 ,求tanx的值;
(2)若 ,又x∈[π,2π],求sinx+cosx的值.

【答案】
(1)解:由a∥b,得sinx1﹣2cosx(﹣1)=0,即sinx=﹣2cosx,

所以tanx=﹣2;


(2)解:由a⊥b,得sinx2cosx+1(﹣1)=0,即2sinxcosx=1,

又x∈[π,2π],所以sinx<0,cosx<0,即sinx+cosx<0

因為(sinx+cosx)2=sin2x+2sinxcosx+cos2x…(10分)=1+2sinxcosx=2,


【解析】(1)根據(jù)向量的平行的條件和同角的三角函數(shù)的關(guān)系即可求出;(2)根據(jù)向量的垂直的條件和同角的平方關(guān)系即可求出.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】將直線2x﹣y+λ=0沿x軸向左平移1個單位,所得直線與圓x2+y2+2x﹣4y=0相切,則實數(shù)λ的值為(
A.﹣3或7
B.﹣2或8
C.0或10
D.1或11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn= ,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn= +(﹣1)nan , 求數(shù)列{bn}的前2n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場擬對某商品進行促銷,現(xiàn)有兩種方案供選擇,每種促銷方案都需分兩個月實施,且每種方案中第一個月與第二個月的銷售相互獨立.根據(jù)以往促銷的統(tǒng)計數(shù)據(jù),若實施方案1,預(yù)計第一個月的銷量是促銷前的1.2倍和1.5倍的概率分別是0.6和0.4,第二個月的銷量是第一個月的1.4倍和1.6倍的概率都是0.5;若實施方案2,預(yù)計第一個月的銷量是促銷前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個月的銷量是第一個月的1.2倍和1.6倍的概率分別是0.6和0.4.令表示實施方案的第二個月的銷量是促銷前銷量的倍數(shù).

(Ⅰ)求, 的分布列;

(Ⅱ)不管實施哪種方案, 與第二個月的利潤之間的關(guān)系如下表,試比較哪種方案第二個月的利潤更大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)過點A(2,0),B(0,1)兩點.
(1)求橢圓C的方程及離心率;
(2)設(shè)直線l與橢圓相交于不同的兩點A,B.已知點A的坐標為(﹣a,0),點 Q(0,y0)在線段AB的垂直平分線上,且 =4,求y0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的首項a1=a,Sn是數(shù)列{an}的前n項和,且滿足:Sn2=3n2an+Sn12 , an≠0,n≥2,n∈N*
(1)若數(shù)列{an}是等差數(shù)列,求a的值;
(2)確定a的取值集合M,使a∈M時,數(shù)列{an}是遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,四邊形AA1B1B是邊長為3的正方形,CC1=2,CC1∥AA1 , 這個幾何體是棱柱嗎?若是,指出是幾棱柱.若不是棱柱,請你試用一個平面截去一部分,使剩余部分是一個棱長為2的三棱柱,并指出截去的幾何體的特征,在立體圖中畫出截面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,梯形中, , , , , 分別為的中點,對于常數(shù),在梯形的四條邊上恰好有8個不同的點,使得成立,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)Sn是數(shù)列{an}的前n項和,已知a1=2,an+1=Sn+2.
(1)求數(shù)列{an}的通項公式.
(2)令bn=(2n﹣1)an , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案