【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系xOy 中,曲線C的參數(shù)方程為 (是參數(shù),0≤≤π),以O(shè) 為極點,以x 軸的正半軸為極軸,建立極坐標(biāo)系.

(Ⅰ)求曲線C 的極坐標(biāo)方程;

(Ⅱ)直線l1,的極坐標(biāo)方程是2psin(θ+)+=0,直線l2:θ =與曲線C的交點為P,與直線l1的交點為Q,求線段PQ的長.

【答案】(Ⅰ)p2-2pcosθ-2=0,其中0≤θ≤π.(Ⅱ) 5.

【解析】試題分析:()曲線的參數(shù)方程消去參數(shù),能求出曲線的普通方程,再由,能求出曲線的極坐標(biāo)方程;()設(shè), ,列出方程組求出, 得出結(jié)果.

試題解析:()曲線的普通方程為,其中.

又∵

∴曲線 的極坐標(biāo)方程為其中.

()設(shè),解得, ;

設(shè)解得, .

故所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點,動圓經(jīng)過點且和直線相切,記動圓的圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)曲線上一點的橫坐標(biāo)為,過的直線交于一點,交軸于點,過點的垂線交于另一點,若的切線,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點,橢圓 的左焦點是,離心率為,且上任意一點的最短距離為.

(1)求的方程;

(2)過點的直線(不過原點)與交于兩點、 為線段的中點.

(i)證明:直線的斜率乘積為定值;

(ii)求面積的最大值及此時的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題:函數(shù)的定義域為;命題:關(guān)于的方程有實根.

(1)如果是真命題,求實數(shù)的取值范圍.

(2)如果命題“”為真命題,且“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓、拋物線的焦點均在軸上, 的中心和的頂點均為原點,平面上四個點, , , 中有兩個點在橢圓上,另外兩個點在拋物線上.

(1)求的標(biāo)準(zhǔn)方程;

(2)是否存在直線滿足以下條件:①過的焦點;②與交于兩點,且以為直徑的圓經(jīng)過原點.若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次趣味校園運動會的頒獎儀式上,高一、高二、高三代表隊人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就座,其中高二代表隊有6人.

(1)求n的值;

(2)把在前排就座的高二代表隊6人分別記為a,b,c,d,e,f,現(xiàn)隨機從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率;

(3)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示中獎,則該代表中獎;若電腦顯示謝謝,則不中獎,求該代表中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)采用隨機模擬的方法估計一位射箭運動員三次射箭恰有兩次命中的概率:先由計算機隨機產(chǎn)生09之間取整數(shù)的隨機數(shù),指定1,2,3,4,5表示命中,6,7,8,9,0表示不命中,再以三個隨機數(shù)為一組,代表三次射箭的結(jié)果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

807 966 191 925 271 932 812 458 569 683

489 257 394 027 552 488 730 113 537 741

根據(jù)以上數(shù)據(jù),估計該運動員三次射箭恰好有兩次命中的概率為

A. 0.20 B. 0.25 C. 0.30 D. 0.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一裝有水的直三棱柱容器(厚度忽略不計),上下底面均為邊長為5的正三角形,側(cè)棱為10,側(cè)面水平放置,如圖所示,點, , 分別在棱, , , 上,水面恰好過點, , , ,且

(1)證明: ;

(2)若底面水平放置時,求水面的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在游學(xué)活動中,在處參觀的第組同學(xué)通知在處參觀的第組同學(xué):第組正離開處向的東南方向游玩,速度約為米/分鐘.已知的南偏西方向且相距米,第組同學(xué)立即出發(fā)沿直線行進并用分鐘與第組同學(xué)匯合.

)設(shè)第組同學(xué)行進的方位角為,求

(方位角:從某點的指北方向線起,依順時針方向到目標(biāo)方向線之間的水平夾角)

)求第組同學(xué)的行進速度為多少?

查看答案和解析>>

同步練習(xí)冊答案