【題目】羽毛球比賽中采用每球得分制,即每回合中勝方得1分,負(fù)方得0分,每回合由上回合的勝方發(fā)球.設(shè)在甲、乙的比賽中,每回合發(fā)球,發(fā)球方得1分的概率為0.6,各回合發(fā)球的勝負(fù)結(jié)果相互獨立.若在一局比賽中,甲先發(fā)球.
(1)求比賽進(jìn)行3個回合后,甲與乙的比分為的概率;
(2)表示3個回合后乙的得分,求的分布列與數(shù)學(xué)期望.
【答案】(1)0.336(2)見解析
【解析】
(1)記“第回合發(fā)球,甲勝”為事件,=1,2,3,且事件相互獨立,設(shè)“3個回合后,甲與乙比分為2比1”為事件,由互斥事件概率加法公式和相互獨立事件乘法公式求出比賽進(jìn)行3個回合后,甲與乙的比分為2比1的概率;
(2)的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此求出的分布列和數(shù)學(xué)期望.
解:記“第回合發(fā)球,甲勝”為事件,=1,2,3,且事件相互獨立.
(1)記“3個回合后,甲與乙比分為2比1”為事件,
則事件發(fā)生表示事件或或發(fā)生,
且,,互斥.
又,
,
.
由互斥事件概率加法公式可得
.
答:3個回合后,甲與乙比分為2比1的概率為0.336.
(2)因表示3個回合后乙的得分,則0,1,2,3.
,,
.
.
所以,隨機(jī)變量的概率分布列為
0 | 1 | 2 | 3 | |
0.216 | 0.336 | 0.304 | 0.144 |
故隨機(jī)變量的數(shù)學(xué)期望為
=.
答:的數(shù)學(xué)期望為1.376.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,人民的收入水平逐步提高,為了解北京市居民的收入水平,某報社隨機(jī)調(diào)查了名居民的月收入,得到如下的頻率分布直方圖:
(1)求的值及這名居民的平均月收入(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
(2)①通過大數(shù)據(jù)分析,北京人的月收入服從正態(tài)分布,其中,,求北京人收入落在的概率;
②將頻率視為概率,若北京某公司一部門有人,記這人中月收入落在的人數(shù)為,求的數(shù)學(xué)期望.
附:若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018 年1月16日,由新華網(wǎng)和中國財經(jīng)領(lǐng)袖聯(lián)盟聯(lián)合主辦的2017中國財經(jīng)年度人物評選結(jié)果揭曉,某知名網(wǎng)站財經(jīng)頻道為了解公眾對這些年度人物是否了解,利用網(wǎng)絡(luò)平臺進(jìn)行了調(diào)查,并從參與調(diào)查者中隨機(jī)選出人,把這人分為 兩類(類表示對這些年度人物比較了解,類表示對這些年度人物不太了解),并制成如下表格:
年齡段 | 歲~歲 | 歲~歲 | 歲~歲 | 歲~歲 |
人數(shù) | ||||
類所占比例 |
(1)若按照年齡段進(jìn)行分層抽樣,從這人中選出人進(jìn)行訪談,并從這人中隨機(jī)選出兩名幸運(yùn)者給予獎勵.求其中一名幸運(yùn)者的年齡在歲~歲之間,另一名幸運(yùn)者的年齡在歲~歲之間的概率;(注:從人中隨機(jī)選出人,共有種不同選法)
(2)如果把年齡在 歲~歲之間的人稱為青少年,年齡在歲~歲之間的人稱為中老年,則能否在犯錯誤的概率不超過的前提下認(rèn)為青少年與中老年人在對財經(jīng)年度人物的了解程度上有差異?
參考數(shù)據(jù):
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1正方體中,點,分別為邊,的中點,將沿所在的直線進(jìn)行翻折,將沿所在直線進(jìn)行翻折,在翻折的過程中,下列說法錯誤的是( )
A. 無論旋轉(zhuǎn)到什么位置,、兩點都不可能重合
B. 存在某個位置,使得直線與直線所成的角為
C. 存在某個位置,使得直線與直線所成的角為
D. 存在某個位置,使得直線與直線所成的角為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:(為參數(shù))和圓的極坐標(biāo)方程:.
(1)分別求直線和圓的普通方程并判斷直線與圓的位置關(guān)系;
(2)已知點,若直線與圓相交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點是橢圓上的任意一點,直線與橢圓交于,兩點,直線,的斜率都存在.
(1)若直線過原點,求證:為定值;
(2)若直線不過原點,且,試探究是否為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體中, AC⊥BC,四邊形ABED是正方形,平面ABED⊥平面ABC,點F,G,H分別為BD,EC,BE的中點,求證:
(1) BC⊥平面ACD
(2)平面HGF∥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位有車牌尾號為的汽車和尾號為的汽車,兩車分屬于兩個獨立業(yè)務(wù)部分.對一段時間內(nèi)兩輛汽車的用車記錄進(jìn)行統(tǒng)計,在非限行日, 車日出車頻率, 車日出車頻率.該地區(qū)汽車限行規(guī)定如下:
車尾號 | 和 | 和 | 和 | 和 | 和 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
現(xiàn)將汽車日出車頻率理解為日出車概率,且, 兩車出車相互獨立.
(I)求該單位在星期一恰好出車一臺的概率.
(II)設(shè)表示該單位在星期一與星期二兩天的出車臺數(shù)之和,求的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,直線的參數(shù)方程為(t為參數(shù)).
(1)寫出曲線的參數(shù)方程和直線的普通方程;
(2)已知點是曲線上一點,,求點到直線的最小距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com