已知△ABC的三邊長都是有理數(shù).
(1)求證cosA是有理數(shù);
(2)求證:對任意正整數(shù)n,cosnA是有理數(shù).
分析:(1)設(shè)出三邊為a,b,c,根據(jù)三者為有理數(shù)可推斷出b2+c2-a2是有理數(shù),b2+c2-a2是有理數(shù),進(jìn)而根據(jù)有理數(shù)集對于除法的具有封閉性推斷出
b2+c2-a2
2bc
也為有理數(shù),根據(jù)余弦定理可知
b2+c2-a2
2bc
=cosA,進(jìn)而可知cosA是有理數(shù).
(2)先看當(dāng)n=1時,根據(jù)(1)中的結(jié)論可知cosA是有理數(shù),當(dāng)n=2時,根據(jù)余弦的二倍角推斷出cos2A也是有理數(shù),再假設(shè)n≤k(k≥2)時,結(jié)論成立,進(jìn)而可知coskA、cos(k-1)A均是有理數(shù),用余弦的兩角和公式分別求得cos(k+1)A,根據(jù)cosA,coskA,cos(k-1)A均是有理數(shù)推斷出cosA,coskA,cos(k-1)A,即n=k+1時成立.最后綜合原式得證.
解答:解:(1)證明:設(shè)三邊長分別為a,b,c,cosA=
b2+c2-a2
2bc
,
∵a,b,c是有理數(shù),b2+c2-a2是有理數(shù),分母2bc為正有理數(shù),又有理數(shù)集對于除法的具有封閉性,
b2+c2-a2
2bc
必為有理數(shù),
∴cosA是有理數(shù).
(2)①當(dāng)n=1時,顯然cosA是有理數(shù);
當(dāng)n=2時,∵cos2A=2cos2A-1,因?yàn)閏osA是有理數(shù),∴cos2A也是有理數(shù);
②假設(shè)當(dāng)n≥k(k≥2)時,結(jié)論成立,即coskA、cos(k-1)A均是有理數(shù).
當(dāng)n=k+1時,cos(k+1)A=coskAcosA-sinkAsinA,cos(k+1)A=coskAcosA-
1
2
[cos(kA-A)-cos(kA+A)]
,cos(k+1)A=coskAcosA-
1
2
cos(k-1)A+
1
2
cos(k+1)A
,
解得:cos(k+1)A=2coskAcosA-cos(k-1)A
∵cosA,coskA,cos(k-1)A均是有理數(shù),∴2coskAcosA-cos(k-1)A是有理數(shù),
∴cosA,coskA,cos(k-1)A均是有理數(shù).
即當(dāng)n=k+1時,結(jié)論成立.
綜上所述,對于任意正整數(shù)n,cosnA是有理數(shù).
點(diǎn)評:本題主要考查余弦定理、數(shù)學(xué)歸納法等基礎(chǔ)知識,考查推理論證的能力與分析問題、解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊長分別為a,b,c,其面積為S,則△ABC的內(nèi)切圓的半徑r=
2Sa+b+c
.這是一道平面幾何題,請用類比推理方法,猜測對空間四面體ABCD存在什么類似結(jié)論?
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊長a,b,c滿足b+2c≤3a,c+2a≤3b,則
ba
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊長為a、b、c,滿足直線ax+by+c=0與圓x2+y2=1相離,則△ABC是( 。
A、銳角三角形B、直角三角形C、鈍角三角形D、以上情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊長為三個連續(xù)的正整數(shù),且最大角為鈍角,則最長邊長為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊長AC=3,BC=4,AB=5,P為AB邊上任意一點(diǎn),則
CP
•(
BA
-
BC
)
的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案