解關于x的不等式:
x+1
x+2
≥0.
考點:其他不等式的解法
專題:不等式的解法及應用
分析:原不等式可化為不等式組,解不等式組可得.
解答: 解:原不等式
x+1
x+2
≥0可化為
(x+1)(x+2)≥0
x+2≠0
,
解得x<-2或x≥-1,
∴原不等式的解集為{x|x<-2或x≥-}
點評:本題考查分式不等式的解集,轉(zhuǎn)化為整式不等式是解決問題的關鍵,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,PA=PD=2,底面ABCD是直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2
2

(1)求直線PC與平面PAD所成的角;
(2)求二面角A-PB-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若以連續(xù)擲兩次骰子分別得到的點數(shù)m、n作為點P的坐標(m,n),求:
(1)點P在直線x+y=7上的概率;
(2)點P在圓x2+y2=25外的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),直線l:y=kx+m(k≠0,m≠0),直線l交橢圓C與P,Q兩點.
(Ⅰ)若k=1,橢圓C經(jīng)過點(
2
,1),直線l經(jīng)過橢圓C的焦點和頂點,求橢圓方程;
(Ⅱ)若k=
1
2
,b=1,且kOP,k,kOQ成等比數(shù)列,求三角形OPQ面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x+5+
-x2-2x+4
,求其值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在棱長為1的正方形ABCD-A1B1C1D1中,M、N、P分別為A1B1、BB1、CC1的中點.
(1)證明D1M、C1B1、CN三線共點;
(2)求異面直線D1P與AM所成角度數(shù)并求CN與AM所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐C-ABD中,AC⊥CB,AC=CB,E為AB的中點,AD=DE=EC=2,CD=2
2

(Ⅰ)求證:平面ABC⊥平面ABD;
(Ⅱ)求直線BD與平面CAD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,直線l:y=-x+2
2
與以原點為圓心、以橢圓C1的短半軸長為半徑的圓相切.求橢圓C1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2-3x的導函數(shù)為f′(x),且函數(shù)f′(x)的對稱軸為x=-1.
(1)求a的值;
(2)求曲線y=f(x)在點(1,f(1))處的切線方程.

查看答案和解析>>

同步練習冊答案