13.已知如圖①,正三角形ABC的邊長(zhǎng)為4,CD是AB邊上的高,E,F(xiàn)分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B,如圖②.
(1)判斷直線AB與平面DEF的位置關(guān)系,并說(shuō)明理由;
(2)求棱錐E-DFC的體積.

分析 (1)在△ABC中,由中位線定理得AB∥EF,由此能證明AB∥平面DEF.
(2)推導(dǎo)出AD⊥BC,從而AD⊥平面BDC,進(jìn)而點(diǎn)E到平面BDC的距離為$\frac{1}{2}AD=1$,由此能求出棱錐E-DFC的體積.

解答 解:(1)直線AB∥平面DEF.
證明如下:
在△ABC中,∵E,F(xiàn)為中點(diǎn),
∴AB∥EF,
∵AB?平面DEF,EF⊆平面DEF,
∴AB∥平面DEF.
解:(2)∵二面角A-DC-B是直二面角,
∴平面ADC⊥平面BDC,
∵AC=BC,D為AB中點(diǎn),∴AD⊥BC,
∵平面ADC∩平面BDC=DC,AD?平面ADC,
∴AD⊥平面BDC,
∴點(diǎn)E到平面BDC的距離為$\frac{1}{2}AD=1$,
又∵${S_{△DFC}}=\frac{1}{2}{S_{△DBC}}=\frac{1}{4}{S_{△ABC}}=\sqrt{3}$,
∴${V_{E-DFC}}=\frac{1}{3}{S_{△DFC}}×1=\frac{{\sqrt{3}}}{3}$.

點(diǎn)評(píng) 本題考查線面關(guān)系的判斷與證明,考查棱錐體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知x,y滿足約束條件$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y的最大值是最小值的3倍,則a的值是(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.7D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{x}^{2}-2ax+2a,x≥0}\end{array}\right.$的圖象上恰好有兩對(duì)關(guān)于原點(diǎn)對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(4,+∞)B.(-∞,0)∪(4,+∞)C.(0,4)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.某天將一枚硬幣連擲了10次,正面朝上的情形出現(xiàn)了6次,若用A表示正面朝上這一事件,則A的( 。
A.概率為$\frac{3}{5}$B.頻率為$\frac{3}{5}$C.頻率為6D.概率接近0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=$\frac{2x-5}{{{x^2}+1}}$的圖象在(0,f(0))處的切線斜率為(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)集合M={x|x>-2},則下列選項(xiàng)正確的是( 。
A.{0}∈MB.Φ∈MC.{0}⊆MD.0⊆M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列函數(shù)是偶函數(shù),并且在(0,+∞)上為增函數(shù)的為(  )
A.$y={x^{\frac{2}{3}}}$B.$y={({\frac{3}{2}})^x}$C.$y={log_{\frac{3}{2}}}x$D.y=-2x2+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.關(guān)于x的方程x2+2(m+1)x+2m+6=0有兩個(gè)實(shí)根,一個(gè)比2大,一個(gè)比2小,則實(shí)數(shù)m的范圍為m<-$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某公司2016年前三個(gè)月的利潤(rùn)(單位:百萬(wàn)元)如表:
月份123
利潤(rùn)23.95.5
(1)求利潤(rùn)y關(guān)于月份x的線性回歸方程;
(2)試用(1)中求得的回歸方程預(yù)測(cè)4月和5月的利潤(rùn);
(3)試用(1)中求得的回歸方程預(yù)測(cè)該公司2016年從幾月份開(kāi)始利潤(rùn)超過(guò)1000萬(wàn)?
相關(guān)公式:b=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$.

查看答案和解析>>

同步練習(xí)冊(cè)答案