已知△ABC的面積和外接圓半徑都是1,求sinAsinBsinC的值.

答案:
解析:


提示:

利用將sinAsinBsinC轉(zhuǎn)化為關(guān)于外接圓半徑R的關(guān)系式,再解決問(wèn)題.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC的面積為14,D、E分別為邊AB、BC上的點(diǎn),且AD:DB=BE:EC=2:1,AE與CD交于P.設(shè)存在λ和μ使
AP
AE
,
PD
CD
,
AB
=
a
BC
=
b

(1)求λ及μ;
(2)用
a
b
表示
BP
;
(3)求△PAC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的面積為3,且滿足0≤
AB
AC
≤6
,設(shè)
AB
AC
的夾角為θ.
(Ⅰ)求θ的取值范圍;
(Ⅱ)求函數(shù)f(θ)=2sin2(
π
4
+θ)-
3
cos2θ
的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閘北區(qū)一模)已知△ABC的面積為1,且滿足
AB
AC
≥2
,設(shè)
AB
AC
的夾角為θ.
(1)求θ的取值范圍;
(2)求函數(shù)f(θ)=
3
cos2θ-2cos2(θ+
π
4
)
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•荊州模擬)已知△ABC的面積為9
3
,且
AC
•(
AB
-
CB
)=18
,向量
m
=(tanA+tanB,sin2C)
和向量
n
=(1,cosAcosB)
是共線向量.
(1)求角C;
(2)求△ABC的邊長(zhǎng)c.

查看答案和解析>>

同步練習(xí)冊(cè)答案