在二項式(axm+bxn12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展開式里最大系數(shù)項恰是常數(shù)項.
(1)求它是第幾項;
(2)求的范圍.
【答案】分析:(1)利用二項展開式的通項公式確定出展開式中的常數(shù)項是第幾項是解決本小題的關(guān)鍵;
(2)通過系數(shù)最大列出關(guān)于a,b的不等式,通過整體思想確定出的范圍.蘊含了不等式思想.
解答:解:(1)設(shè)Tr+1=C12r(axm12-r•(bxnr=C12ra12-rbrxm(12-r)+nr為常數(shù)項,
則有m(12-r)+nr=0,即m(12-r)-2mr=0,∴r=4,它是第5項.
(2)∵第5項又是系數(shù)最大的項,
∴有
由①得a8b4a9b3,
∵a>0,b>0,∴b≥a,即
由②得

點評:本題考查二項是展開式的特定項是哪一項,考查方程思想,轉(zhuǎn)化思想,整體找出所求表達式的范圍,關(guān)鍵要建立合適的不等式.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在二項式(axm+bxn12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展開式里最大系數(shù)項恰是常數(shù)項.
(1)求它是第幾項;
(2)求
ab
的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若非零實數(shù)m、n滿足2m+n=0,且在二項式(axm+bxn12(a>0,b>0)的展開式中當且僅當常數(shù)項是系數(shù)最大的項,
(1)求常數(shù)項是第幾項;
(2)求
ab
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在二項式(axm+bxn12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展開式里最大系數(shù)項恰是常數(shù)項.

   (1)求它是第幾項;

   (2)求的范圍.           

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(12分)在二項式(axm+bxn12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展開式里最大系數(shù)項恰是常數(shù)項.   (1)求它是第幾項(2)求的范圍. [來源:Z|xx|k.Com]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若非零實數(shù)m、n滿足2m+n=0,且在二項式(axm+bxn12(a>0,b>0)的展開式中當且僅當常數(shù)項是系數(shù)最大的項,
(1)求常數(shù)項是第幾項;
(2)求數(shù)學公式的取值范圍.

查看答案和解析>>

同步練習冊答案