若定義在R上的函數(shù)f(x)滿足f(-x)+f(x)=0,且f(x+1)=f(1-x),若f(1)=5,則f(2015)=(  )
A、5B、-5C、0D、3
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意求出函數(shù)的周期,轉(zhuǎn)化f(2015)為已知函數(shù)定義域內(nèi)的自變量,然后求值.
解答: 解:∵定義在R上的函數(shù)f(x)滿足f(-x)+f(x)=0,
∴f(-x)=-f(x),
∵f(x+1)=f(1-x),
∴f(x+2)=f[(x+1)+1]=f[1-(x+1)]=f(-x)=-f(x),
即f(x+2)=-f(x),
f(x+4)=-f(x+2),
∴f(x+4)=f(x),
∴函數(shù)的周期為4,
∴f(2015)=f(4×504-1)=f(-1)=-f(1),
∵f(1)=5,
∴f(2015)=-5.
故選:B.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、周期性的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.本題難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)“小康縣”的經(jīng)濟(jì)評(píng)價(jià)標(biāo)準(zhǔn):
①年人均收入不小于7000元;
②年人均食品支出不大于收入的35%.某縣有40萬人,調(diào)查數(shù)據(jù)如下:
年人均收入/元0200040006000800010 00012 00016 000
人數(shù)/萬人63556753
則該縣(  )
A、是小康縣
B、達(dá)到標(biāo)準(zhǔn)①,未達(dá)到標(biāo)準(zhǔn)②,不是小康縣
C、達(dá)到標(biāo)準(zhǔn)②,未達(dá)到標(biāo)準(zhǔn)①,不是小康縣
D、兩個(gè)標(biāo)準(zhǔn)都未達(dá)到,不是小康縣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x+
a
2x
-1
(a為實(shí)數(shù))
(1)當(dāng)a=0時(shí),若函數(shù)y=g(x)為奇函數(shù).當(dāng)x>0時(shí),g(x)=f(x).求y=g(x)的解析式.
(2)當(dāng)a<0時(shí),求關(guān)于x的方程f(x)=0的實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各式中最小值為2的是( 。
A、sinx+
1
sinx
,x∈(0,
π
2
)
B、
x2+3
x2+2
(x∈R)
C、ex+e-x(x∈R)
D、x+
1
x
(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(
1
2
)-1+(
1
4
)0+
log25625+lg
1
100
+ln
e
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=[x|-1≤x<2},B={x|x-a≤0},若A⊆B,則實(shí)數(shù)a的取值范圍是( 。
A、a≤2B、a≥-1
C、a>-1D、a≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2+logax(1≤x≤9),其中a滿足
4(a-2)4
<-a2
+7a-10(a∈N)求函數(shù)y=2f(x2)-[f(x)-
3
2
]2
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比q=-
1
3
,則
a1+a3+a5
a2+a4+a6
等于( 。
A、-
1
3
B、-3
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程lg(lnx)=0的解為x等于( 。
A、1B、eC、10D、π

查看答案和解析>>

同步練習(xí)冊(cè)答案