已知橢圓C:的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
(1)求橢圓C的方程.
(2)設(shè)直線l:y=kx+m與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為,且△AOB的面積為,求:實(shí)數(shù)k的值.
【答案】分析:(1)因?yàn)闄E圓離心率為e==,又因?yàn)槎梯S一個(gè)端點(diǎn)到右焦點(diǎn)的距離為a=,故c=,從而b2=a2-c2=1,橢圓C的方程為
(2)先由原點(diǎn)O到直線l的距離為,得等式,再將直線l與橢圓聯(lián)立,利用韋達(dá)定理和△AOB的面積為,得等式=,最后將兩等式聯(lián)立解方程即可得k值
解答:解:(1)設(shè)橢圓的半焦距為c,依題意,
∴b=1,∴所求橢圓方程為
(2)設(shè)A(x1,y1),B(x2,y2).由已知,得
又由,消去y得:
(3k2+1)x2+6kmx+3m2-3=0,∴,
∴|AB|2=(1+k2)(x2-x12=
==
,
化簡(jiǎn)得:9k4-6k2+1=0
解得:
點(diǎn)評(píng):本題考察了橢圓的標(biāo)準(zhǔn)方程,直線與橢圓相交的性質(zhì),解題時(shí)要特別注意韋達(dá)定理在解題中的重要應(yīng)用,巧妙地運(yùn)用設(shè)而不求的解題思想提高解題效率.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:的離心率為,雙曲線x²-y²=1的漸近線與橢圓有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓c的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年廣東省廣州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:的離心率為,且經(jīng)過(guò)點(diǎn)
(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測(cè)試數(shù)學(xué)理卷 題型:選擇題

已知橢圓C:的離心率為,過(guò)右焦點(diǎn)且斜率為的直線與橢圓C相交于、兩點(diǎn).若,則 =(      )

A.         B.                  C.2            D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知橢圓C:,它的離心率為.直線與以原點(diǎn)為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年吉林一中高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題

.已知橢圓C:的離心率為,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)直線與橢圓C交于,兩點(diǎn),點(diǎn),且,求直線的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案