分析 判斷F為A,B的中點,設(shè)出B,求出A,C坐標,利用向量的數(shù)量積求解即可.
解答 解:過拋物線y2=2px(p>0)的焦點F的直線l與拋物線
在第一象限的交點為A,
與拋物線的準線的交點為B,點A在拋物線的準線上的射影為C,
若$\overrightarrow{AF}=\overrightarrow{FB}$,可知F($\frac{p}{2},0$)是AB的中點,設(shè)B($-\frac{p}{2}$,-n)n>0,則A($\frac{3P}{2},n$),
C(-$\frac{p}{2}$,n),$\overrightarrow{BA}$=(2p,2n,$\overrightarrow{BC}$=(0,2n),
$\overrightarrow{BA}•\overrightarrow{BC}=12$,可得:4n2=12,解得n=$\sqrt{3}$,|BC|=2$\sqrt{3}$
|AF|=|AC|=2p=$\frac{\frac{1}{2}|BC|}{sin60°}$=2.
所求拋物線方程為:y2=2x.
故答案為:y2=2x.
點評 本題考查拋物線的可的性質(zhì)的應(yīng)用,直線與拋物線的位置關(guān)系的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sinα•cosα | B. | -sinα•cosα | C. | sin2α | D. | cos2α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 1.5 | 3 | 5 | 6 | 7 | 8 | 9 | 14 | 27 |
lgx | 2a+b | a+b | a-c+1 | b+c | a+2b+c | 3(c-a) | 2(a+b) | b-a | 3(a+b) |
A. | lg$\frac{2}{21}$ | B. | $\frac{1}{2}$lg$\frac{3}{14}$ | C. | $\frac{1}{2}$lg$\frac{3}{7}$ | D. | lg$\frac{6}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 31(4)=62(2) | B. | 101(2)=5(10) | C. | 119(10)=315(6) | D. | 27(8)=212(3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com