設(shè)集合A={a|a=3n+2,nÎ Z},集合B={b|b=3k-1,kÎ Z},求證:A=B.

答案:略
解析:

要證明A=B,則必須證明AÍ BAÊ B同時(shí)成立.

證明:(1)AÍ B.設(shè)任一元素aÎ A,

a=3n2=3(n1)1(nÎ Z),

nÎ Z,∴n1Î Z,∴aÎ B,即AÍ B

(2)BÍ A.設(shè)任一元素bÎ B

b=3k1=3(k1)2(kÎ Z),

kÎ Z,∴k1Î Z,∴bÎ A,BÍ A

綜上可知A=B


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={a|f(x)=
1
3
x3-ax},且f(x)為增函數(shù),則A=( 。
A、{a|-1<a}
B、{a|a≥0}
C、{a|-1≤a<1}
D、{a|a≤0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

15、設(shè)集合A⊆R,對(duì)任意a、b、c∈A,運(yùn)算“⊕具有如下性質(zhì):
(1)a⊕b∈A; (2)a⊕a=0; (3)(a⊕b)⊕c=a⊕c+b⊕c+c
給出下列命題:
①0∈A
②若1∈A,則(1⊕1)⊕1=0;
③若a∈A,且a⊕0=a,則a=0;
④若a、b、c∈A,且a⊕0=a,a⊕b=c⊕b,則a=c.
其中正確命題的序號(hào)是
①③④
 (把你認(rèn)為正確的命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)定義在R上,且滿足f(x)≠0,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),0<f(x)<1.
(1)求證:對(duì)x∈R,都有f(x)>0;
(2)求證:f(x)在R上是減函數(shù);
(3)設(shè)集合A={(x,y)|f(-x2+6x-1)•f(y)=1},B={(x,y)|y=a},且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(附加題)設(shè)集合A={x|x=m+n
2
,其中m,n∈Z}

(1)對(duì)于給定的整數(shù)m,n,如果滿足0<m+n
2
<1
,那么集合A中有幾個(gè)元素?
(2)如果整數(shù)m,n最大公約數(shù)為1,問是否存在x,使得x和
1
x
都屬于A,如果存在,請(qǐng)寫出一個(gè),如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西模擬)若集合A具有以下性質(zhì):①0∈A,1∈A;②若x,y∈A,則x-y∈A,且x≠0時(shí),
1
x
∈A
.則稱集合A是“好集”.
(1)集合B={-1,0,1}是好集;
(2)有理數(shù)集Q是“好集”;
(3)設(shè)集合A是“好集”,若x,y∈A,則x+y∈A;
(4)設(shè)集合A是“好集”,若x,y∈A,則必有xy∈A;
(5)對(duì)任意的一個(gè)“好集A”,若x,y∈A,且x≠0,則必有
y
x
∈A

則上述命題正確的個(gè)數(shù)有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案