(本小題滿分12分) 已知函數(shù),
(1)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(2)若在區(qū)間()上存在一點(diǎn),使得成立,求的取值范圍.
(1)
(2)或.
【解析】
試題分析:(1)先求出函數(shù)h(x)的導(dǎo)函數(shù),分情況討論讓其大于0求出增區(qū)間,小于0求出減區(qū)間即可得到函數(shù)的單調(diào)區(qū)間;
(2)先把f(x0)<g(x0)成立轉(zhuǎn)化為h(x0)<0,即函數(shù)h(x)=x+-alnx在[1,e]上的最小值小于零;再結(jié)合(Ⅱ)的結(jié)論分情況討論求出其最小值即可求出a的取值范圍
在上存在一點(diǎn),使得,即
函數(shù)在上的最小值小于零. …由(Ⅱ)可知
①即,即時(shí), 在上單調(diào)遞減,
所以的最小值為,由可得,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011313185608967563/SYS201301131320133708260756_DA.files/image016.png">,所以;
②當(dāng),即時(shí), 在上單調(diào)遞增,
所以最小值為,由可得;③當(dāng),即時(shí), 可得最小值為,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011313185608967563/SYS201301131320133708260756_DA.files/image025.png">,所以,
故
此時(shí),不成立.
綜上討論可得所求的范圍是:或.
考點(diǎn):本試題主要考查了利用導(dǎo)函數(shù)來研究函數(shù)的極值.
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用導(dǎo)函數(shù)來研究函數(shù)的極值時(shí),分三步①求導(dǎo)函數(shù),②求導(dǎo)函數(shù)為0的根,③判斷根左右兩側(cè)的符號(hào),若左正右負(fù),原函數(shù)取極大值;若左負(fù)右正,原函數(shù)取極小值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com