在△ABC中,lgsinA,lgsinB,lgsinC成等差數(shù)列,是三邊a,b,c成等比數(shù)列的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分又不必要條件
在△ABC中,若lgsinA,lgsinB,lgsinC成等差數(shù)列,則lgsinA+lgsinC=2lgsinB,即lgsinAsinC=lgsin2B,所以sinAsinC=sin2B,
由正弦定理得ac=b2,所以三邊a,b,c成等比數(shù)列.
若三邊a,b,c成等比數(shù)列,則ac=b2,由正弦定理得sinAsinC=sin2B,所以lgsinA+lgsinC=lgsinAsinC=lgsin2B=2lgsinB,
所以lgsinA,lgsinB,lgsinC成等差數(shù)列.
所以在△ABC中,lgsinA,lgsinB,lgsinC成等差數(shù)列,是三邊a,b,c成等比數(shù)列的充要條件.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中;角A、B、C所對(duì)的邊分別是a、b、c,且a=
7
,b=2,c=3,O為△ABC的外心.
(I)求△ABC的面積;
(II)求
OB
OC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若sinB+cosB=
3
-1
2

(1)求角B的大小;
(2)又若tanA+tanC=3-
3
,且∠A>∠C,求角A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=2,BC=
2
∠ABC=
4
.以點(diǎn)B為圓心,線段BC的長(zhǎng)為半徑的半圓分別交AB所在直線于點(diǎn)E、F,交線段AC于點(diǎn)D,則弧
CD
的長(zhǎng)約為
 
.(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A滿足條件
3
sinA+cosA=1,AB=2,BC=2
3
,則角A=
 
,△ABC的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若A=
C
2
,求證:
1
3
c-a
b
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案