在長度為時間T的時間段內(nèi),有兩個長短不等的信號隨機進入收音機.長信號持續(xù)時間長度為t1(≤T),短息號持續(xù)時間長度為t2(≤T),則這兩個信號互不干擾的概率是
 
(用t1、t2、T表示)
考點:幾何概型
專題:概率與統(tǒng)計
分析:設(shè)兩個信號進入的時間分別分別是x,y,建立兩個信息互不干擾的等價條件為x>y,或x<y,求出對應(yīng)的面積即可得到結(jié)論.
解答: 解:設(shè)x,y表示兩個長短不等的信號到達時間,樣本空間S={(x,y)0≤x,y≤T},
記A為“兩個信號互不干擾”,則A={(x,y)|x-y>t1,y-x>t2},
則A對應(yīng)的區(qū)域為陰影部分,對應(yīng)的面積為T2-
1
2
(T-t1)2-
1
2
(T-t2)2

由幾何概型公式得對應(yīng)的概率P=
T2-
1
2
(T-t1)2-
1
2
(T-t2)2
T2
,
故答案為:
T2-
1
2
(T-t1)2-
1
2
(T-t2)2
T2
點評:本題主要考查幾何概型的概率的計算根據(jù)條件設(shè)出二元變量,求出對應(yīng)區(qū)域的面積是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

同時擲三枚骰子,則所得點數(shù)中最大點數(shù)是最小點數(shù)兩倍的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩定點A(-1,0)和B(1,0),動點P(x,y)在直線l:y=x+2上移動,橢圓C以A,B為焦點且經(jīng)過點P,則橢圓C的離心率的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2011年3月發(fā)生在日本的9級大地震雖然過去多年了,但它對日本的核電站的破壞卻是持續(xù)的,其中有一種放射性元素銫137在其衰變過程中,假設(shè)近似滿足:其含量M(單位:太貝克)與時間t(單位:年)滿足函數(shù)關(guān)系:M(t)=M02-
t
30
,其中M0為t=0時銫137的含量.已知t=30時,銫137含量的變化率是-10ln2(太貝克/年),則M(60)等于( 。
A、5太貝克
B、72ln 2太貝克
C、150ln 2太貝克
D、150太貝克

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,D為BC上一點,BD=
1
2
DC,∠ADB=120°,AD=2,若△ADC的面積為3-
3
,則∠ABC=( 。
A、30°B、60°
C、15°D、45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)P為銳角△ABC的外心(三角形外接圓圓心),
AP
=k(
AB
+
AC
)(k∈R).若cos∠BAC=
2
5
,則k=(  )
A、
5
14
B、
2
14
C、
5
7
D、
3
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓柱的側(cè)面展開圖是一個邊長為6π和4π的矩形,則該圓柱的底面積是( 。
A、24π2
B、36π2和16π2
C、36π
D、9π和4π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)正項等比數(shù)列{an},已知a2=2,a3a4a5=29
(1)求首項a1和公比q的值;
(2)若數(shù)列{bn}滿足bn=
1
n
[lga1+lga2+…lgan-1+lg(kan)],問是否存在正數(shù)k,使數(shù)列{bn}為等差數(shù)列?若存在,求k的值.若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足
y≥x
x+y≤2
x≥a
,且目標函數(shù)z=2x+y的最大值為M,最小值為m,若M=4m,則實數(shù)a的值為( 。
A、1
B、
1
3
C、
1
4
D、
1
8

查看答案和解析>>

同步練習冊答案