已知數(shù)列{an}的通項(xiàng)公式是an=(-1)n(n+1),則a1+a2+a3+…+a10=( )
A.-55
B.-5
C.5
D.55
【答案】分析:根據(jù)數(shù)列{an}的通項(xiàng)公式是an=(-1)n(n+1),故奇數(shù)項(xiàng)的通項(xiàng)公式an=-n-1,偶數(shù)項(xiàng)的通項(xiàng)公式為an=n+1,求出該數(shù)列前十項(xiàng)中奇數(shù)項(xiàng)和偶數(shù)項(xiàng)的和即可.
解答:解:當(dāng)n為奇數(shù)時,
則奇數(shù)項(xiàng)的通項(xiàng)公式an=-n-1,
當(dāng)n為偶數(shù)時,
則偶數(shù)項(xiàng)的通項(xiàng)公式為an=n+1,
即a1+a2+a3+…+a10=-2+3-4+5-6+7-8+9-10+11=5,
故選C.
點(diǎn)評:本題主要考查數(shù)列求和的知識點(diǎn),解答本題的關(guān)鍵是分別求出該數(shù)列前十項(xiàng)中奇數(shù)項(xiàng)和偶數(shù)項(xiàng)的和,本題難度不大.