福建高考將函數(shù)f(x)=sin(2x+θ)的圖象向右平移φ(φ>0)個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象,若f(x),g(x)的圖象都經(jīng)過(guò)點(diǎn)P,則φ的值可以是(  )
A.B.C.D.
B
∵P在f(x)的圖象上,
∴f(0)=sin θ=.
∵θ∈,∴θ=,
∴f(x)=sin,
∴g(x)=sin .
∵g(0)=,
∴sin.
驗(yàn)證,φ=時(shí),
sin=sin=sin成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2014·大慶模擬)已知向量a=(,cosωx),b=(sinωx,1),函數(shù)f(x)=a·b,且最小正周期為4π.
(1)求ω的值.
(2)設(shè)α,β∈,f=,f=-,求sin(α+β)的值.
(3)若x∈[-π,π],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)(其中>0,),且f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為
(1)求的值;
(2)如果在區(qū)間的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知向量, 設(shè)函數(shù).
(1)求f (x)的最小正周期.
(2)求f (x)在上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),是實(shí)數(shù)常數(shù))的圖像上的一個(gè)最高點(diǎn),與該最高點(diǎn)最近的一個(gè)最低點(diǎn)是,
(1)求函數(shù)的解析式及其單調(diào)增區(qū)間;
(2)在銳角三角形△ABC中,角A、B、C所對(duì)的邊分別為,且,角A的取值范圍是區(qū)間M,當(dāng)時(shí),試求函數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的兩對(duì)稱(chēng)軸之間的最小距離是,則        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:函數(shù)
(1)求函數(shù)的周期T,與單調(diào)增區(qū)間.
(2)函數(shù)的圖象有幾個(gè)公共交點(diǎn).
(3)設(shè)關(guān)于的函數(shù)的最小值為,試確定滿足的值,并對(duì)此時(shí)的值求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

要得到函數(shù)的圖象,只需將函數(shù)的圖象上所有的點(diǎn)的(  ).
A.橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),再向左平行移動(dòng)個(gè)單位長(zhǎng)度
B.橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),再向右平行移動(dòng)個(gè)單位長(zhǎng)度
C.橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再向左平行移動(dòng)個(gè)單位長(zhǎng)度
D.橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再向右平行移動(dòng)個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將函數(shù)的圖像向左平移個(gè)單位,則平移后的函數(shù)圖像(     )
A.關(guān)于直線對(duì)稱(chēng)B.關(guān)于直線對(duì)稱(chēng)
C.關(guān)于點(diǎn)對(duì)稱(chēng)D.關(guān)于點(diǎn)對(duì)稱(chēng)

查看答案和解析>>

同步練習(xí)冊(cè)答案