【題目】如圖,在四棱錐中,已知底面ABCD是矩形,PA⊥平面ABCD,AP=2,AB=2,AD=4,且E、F分別是PB、PC的中點。
(1)求三棱錐的體積;
(2)求直線EC與平面PCD所成角的大小(結果用反三角函數值表示).
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,橢圓()的左右兩個焦點分別是、,在橢圓上運動.
(1)若對有最大值為120°,求出、的關系式;
(2)若點是在橢圓上位于第一象限的點,過點作直線的垂線,過作直線的垂線,若直線、的交點在橢圓上,求點的坐標;
(3)若設,在(2)成立的條件下,試求出、兩點間距離的函數,并求出的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產某種產品的年固定成本為250萬元,每生產千件,需另投入成本,當年產量不足80千件時,(萬元);當年產量不小于80千件時,(萬元),每件售價為0.05萬元,通過市場分析,該廠生產的商品能全部售完.
(1)寫出年利潤(萬元)關于年產量(千件)的函數解析式;
(2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人玩猜數字游戲,先由甲心中任想一個數字,記為,再由乙猜甲剛才想的數字把乙猜的數字記為,且,若,則稱甲乙“心有靈犀”,現任意找兩個人玩這個游戲,得出他們“心有靈犀”的概率為________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點F1、F2為雙曲線(b>0)的左、右焦點,過F2作垂直于x軸的直線,在x軸上方交雙曲線C于點M,且∠MF1F2=30°,圓O的方程是x2+y2=b2.
(1)求雙曲線C的方程;
(2)過雙曲線C上任意一點P作該雙曲線兩條漸近線的垂線,垂足分別為P1、P2,求的值;
(3)過圓O上任意一點Q作圓O的切線l交雙曲線C于A、B兩點,AB中點為M,求證:|AB|=2|OM|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的頂點為原點,其焦點到直線的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.
(1) 求拋物線的方程;
(2) 當點為直線上的定點時,求直線的方程;
(3) 當點在直線上移動時,求的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com