已知等差數(shù)列中,公差,其前項(xiàng)和為,且滿(mǎn)足:,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令),求的最大值.
(1);(2)取得最大值.

試題分析:本題主要考查等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式、等差數(shù)列的性質(zhì)和基本不等式等基礎(chǔ)知識(shí),考查思維能力、分析問(wèn)題解決問(wèn)題的能力、運(yùn)算能力等.第一問(wèn),先利用等差數(shù)列的性質(zhì)將轉(zhuǎn)化成,再結(jié)合的值,聯(lián)立解出,求出,寫(xiě)出通項(xiàng)公式;第二問(wèn),先利用等差數(shù)列的前n項(xiàng)和公式求,代入到中,再將結(jié)果代入到中,上下同除以,利用基本不等式求最值,要注意等號(hào)成立的條件.
試題解析:∵數(shù)列是等差數(shù)列,
,又,

∵公差,∴,
,
.
(2)∵,
,
.
當(dāng)且僅當(dāng),即時(shí),取得最大值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正項(xiàng)數(shù)列的前n項(xiàng)和為,且。
(Ⅰ)證明數(shù)列為等差數(shù)列并求其通項(xiàng)公式;
(2)設(shè),數(shù)列的前n項(xiàng)和為,證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)是數(shù)列的前項(xiàng)和,對(duì)任意都有成立, (其中、、是常數(shù)).
(1)當(dāng),,時(shí),求
(2)當(dāng),時(shí),
①若,求數(shù)列的通項(xiàng)公式;
②設(shè)數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱(chēng)該數(shù)列是“數(shù)列”.
如果,試問(wèn):是否存在數(shù)列為“數(shù)列”,使得對(duì)任意,都有
,且.若存在,求數(shù)列的首項(xiàng)的所
有取值構(gòu)成的集合;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿(mǎn)足,,且對(duì)任意的正整數(shù),均成等比數(shù)列.
(1)求的值;
(2)證明:均成等比數(shù)列;
(3)是否存在唯一正整數(shù),使得恒成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)是各項(xiàng)均為非零實(shí)數(shù)的數(shù)列的前項(xiàng)和,給出如下兩個(gè)命題上:
命題是等差數(shù)列;命題:等式對(duì)任意)恒成立,其中是常數(shù)。
⑴若的充分條件,求的值;
⑵對(duì)于⑴中的,問(wèn)是否為的必要條件,請(qǐng)說(shuō)明理由;
⑶若為真命題,對(duì)于給定的正整數(shù))和正數(shù)M,數(shù)列滿(mǎn)足條件,試求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),記,若是遞減數(shù)列,則實(shí)數(shù)的取值范圍是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,,的前5項(xiàng)和=(  )
A.7B.15C.20D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等比數(shù)列的前項(xiàng)和為,且成等差數(shù)列。若,則             。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列滿(mǎn)足,則(   )
A.53B.54 C.55D.109

查看答案和解析>>

同步練習(xí)冊(cè)答案