【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識(shí)測試.
(Ⅰ)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為環(huán)保知識(shí)成績優(yōu)秀與學(xué)生的文理分類有關(guān).
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計(jì) | |
甲班 | |||
乙班 | 30 | ||
總計(jì) | 60 |
(Ⅱ)現(xiàn)已知A,B,C三人獲得優(yōu)秀的概率分別為 ,設(shè)隨機(jī)變量X表示A,B,C三人中獲得優(yōu)秀的人數(shù),求X的分布列及期望E(X).
附: ,n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
【答案】解:(Ⅰ)2×2列聯(lián)表如下
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 40 | 20 | 60 |
乙班 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由 算得, ,
所以有99%的把握認(rèn)為學(xué)生的環(huán)保知識(shí)成績與文理分科有關(guān)
(Ⅱ)設(shè)A,B,C成績優(yōu)秀分別記為事件M,N,R,則
∴隨機(jī)變量X的取值為0,1,2,3
,
所以隨機(jī)變量X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
E(X)=0× +1× +2× +3× =
【解析】(Ⅰ)補(bǔ)全表格后利用公式直接求解并做比較即可;(Ⅱ)根據(jù)題意求得X的分布列,并根據(jù)期望公式進(jìn)行求解即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,MD⊥平面ABCD,NB∥MD,且AD=2,NB=1,CD=MD=3.
(1)過B作平面BFG∥平面MNC,平面BFG與CD、DM分別交于F、G,求AF與平面MNC所成角的正弦值;
(2)E為直線MN上一點(diǎn),且平面ADE⊥平面MNC,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形內(nèi)作兩個(gè)互相外切的圓,同時(shí)每一個(gè)圓又與正方形的兩相鄰邊相切,當(dāng)一個(gè)圓為正方形內(nèi)切圓時(shí)半徑最大,另一圓半徑最小,記其中一個(gè)圓的半徑為x,兩圓的面積之和為S,將S表示為x的函數(shù)。
求:(1)函數(shù)的解析式;
(2)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足,且的最小值是.
(1)求的解析式;
(2)若關(guān)于的方程在區(qū)間上有唯一實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)函數(shù),對任意都有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵,研究鮭魚的科學(xué)家發(fā)現(xiàn)鮭魚的游速(單位: )與其耗氧量單位數(shù)之間的關(guān)系可以表示為函數(shù),其中為常數(shù),已知一條鮭魚在靜止時(shí)的耗氧量為100個(gè)單位;而當(dāng)它的游速為時(shí),其耗氧量為2700個(gè)單位.
(1)求出游速與其耗氧量單位數(shù)之間的函數(shù)解析式;
(2)求當(dāng)一條鮭魚的游速不高于時(shí),其耗氧量至多需要多少個(gè)單位?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C:ρ=2 cos(θ﹣ ).
(Ⅰ) 求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ) 求曲線C上的點(diǎn)到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性并證明;
(2)若關(guān)于的不等式在有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)滿足:對于s,t∈[0,+∞),都有f(s)≥0,f(t)≥0,且f(s)+f(t)≤f(s+t),則稱函數(shù)f (x)為“T函數(shù)”.
(I)試判斷函數(shù)f1(x)=x2與f2(x)=lg(x+1)是否是“T函數(shù)”,并說明理由;
(Ⅱ)設(shè)f (x)為“T函數(shù)”,且存在x0∈[0,+∞),使f(f(x0))=x0.求證:f (x0) =x0;
(Ⅲ)試寫出一個(gè)“T函數(shù)”f(x),滿足f(1)=1,且使集合{y|y=f(x),0≤x≤1)中元素的個(gè)數(shù)最少.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣1)2﹣ .
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1 , x2 , 證明x1+x2>2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com