【題目】如圖,已知橢圓 的離心率為 ,F(xiàn)1、F2為其左、右焦點,過F1的直線l交橢圓于A、B兩點,△F1AF2的周長為 .
(1)求橢圓的標準方程;
(2)求△AOB面積的最大值(O為坐標原點).
【答案】
(1)解:設(shè)橢圓的半焦距為c,則 ,由題意知 ,
二者聯(lián)立解得 ,c=1,則b2=1,所以橢圓的標準方程為
(2)解:設(shè)直線l的方程為:x=ky﹣1,與 聯(lián)立,消x,整理得:(k2+2)y2﹣2ky﹣1=0,△=(﹣2k)2+4(k2+2)=8k2+8>0, , ,
所以 = = =
= = = = (當且僅當 ,即k=0時等號成立),所以△AOB面積的最大值為 .
說明:若設(shè)直線l的方程為:y=k(x+1)(k≠0),則 ,與 聯(lián)立,消x,整理得: , ,
所以 = = = = ,
當且僅當 ,即k=0時等號成立,由k≠0,則 .
當直線l的方程為:x=﹣1時,此時 , .
綜上所述:△AOB面積的最大值為
【解析】(1)設(shè)橢圓的半焦距為c,利用離心率以及△F1AF2的周長,解得a,c,然后求解橢圓的標準方程.(2)設(shè)直線l的方程為:x=ky﹣1,與 聯(lián)立,消x,整理得:(k2+2)y2﹣2ky﹣1=0求出A,B的縱坐標,表示出三角形的面積公式,化簡整理,通過基本不等式求出最值.說明:若設(shè)直線l的方程為:y=k(x+1)(k≠0),則 ,與 聯(lián)立,方法與前邊的求解相同.
【考點精析】解答此題的關(guān)鍵在于理解橢圓的標準方程的相關(guān)知識,掌握橢圓標準方程焦點在x軸:,焦點在y軸:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,角α(0≤α≤π)的始邊為x軸的非負半軸,終邊與單位圓的交點為A,將OA繞坐標原點逆時針旋轉(zhuǎn) 至OB,過點B作x軸的垂線,垂足為Q.記線段BQ的長為y,則函數(shù)y=f(α)的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B分別是橢圓 的長軸的左右端點,點F為橢圓的右焦點,直線PF的方程為: 且PA⊥PF.
(1)求直線AP的方程;
(2)設(shè)點M是橢圓長軸AB上一點,點M到直線AP的距離等于|MB|,求橢圓上的點到點M的距離d的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 與g(x)=cos(2x+φ) ,它們的圖象有一個橫坐標為 的交點.
(Ⅰ)求φ的值;
(Ⅱ)將f(x)圖象上所有點的橫坐標變?yōu)樵瓉淼? 倍,得到h(x)的圖象,若h(x)的最小正周期為π,求ω的值和h(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) 的平均數(shù)為 ,標準差是 ,則另一組數(shù) 的平均數(shù)和標準差分別是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:( )
①向量 , 不共線,則向量 與向量 一定不共線
②對任意向量 , ,則 恒成立
③在同一平面內(nèi),對兩兩均不共線的向量 , , ,若給定單位向量 和正數(shù) ,總存在單位向量 和實數(shù) ,使得
則正確的序號為( )
A.①②③
B.①③
C.②③
D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=2cos(x﹣ )的圖象上所有的點的橫坐標縮短到原來的 倍(縱坐標不變),得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)的圖象( )
A.關(guān)于點(﹣ ,0)對稱
B.關(guān)于點( ,0)對稱
C.關(guān)于直線x=﹣ 對稱
D.關(guān)于直線x= 對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一同學(xué)在電腦中打出如下若干個圓:○●○○●○○○●○○○○●○○○○○●…,若依此規(guī)律繼續(xù)下去,得到一系列的圓,則在前2012個圓中共有●的個數(shù)是( )
A.61
B.62
C.63
D.64
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com