在平面直角坐標(biāo)系中,已知橢圓的離心率,且橢圓C上一點(diǎn)到點(diǎn)Q的距離最大值為4,過點(diǎn)的直線交橢圓于點(diǎn)
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)利用轉(zhuǎn)化為二次函數(shù)求最值,求得相應(yīng)值;(Ⅱ)先由點(diǎn)P在橢圓上建立實(shí)數(shù)與直線的斜率之間的關(guān)系,再由求得的范圍,進(jìn)而求得實(shí)數(shù)的取值范圍.
試題解析:(Ⅰ)∵ ∴         (1分)
則橢圓方程為
設(shè)
       (2分)

當(dāng)時(shí),有最大值為         (3分)
解得,橢圓方程是       (4分)
(Ⅱ)設(shè)方程為

整理得.           (5分)
,得.
              (6分)

,
        (7分)
由點(diǎn)P在橢圓上,得
化簡得①                 (8分)
又由
,代入得
            (9分)
化簡,得
,                    (10分)

由①,得
聯(lián)立②,解得     (12分)
考點(diǎn):1.橢圓的方程;2.直線與橢圓的位置關(guān)系;3.弦長公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知定點(diǎn)A(-2,0)、B(2,0),異于A、B兩點(diǎn)的動(dòng)點(diǎn)P滿足,其中k1、k2分別表示直線AP、BP的斜率.

(Ⅰ)求動(dòng)點(diǎn)P的軌跡E的方程;
(Ⅱ)若N是直線x=2上異于點(diǎn)B的任意一點(diǎn),直線AN與(I)中軌跡E交予點(diǎn)Q,設(shè)直線QB與以NB為直徑的圓的一個(gè)交點(diǎn)為M(異于點(diǎn)B),點(diǎn)C(1,0),求證:|CM|·|CN| 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,曲線與曲線相交于、、、四個(gè)點(diǎn).
⑴ 求的取值范圍;
⑵ 求四邊形的面積的最大值及此時(shí)對(duì)角線的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓的左頂點(diǎn)為是橢圓上異于點(diǎn)的任意一點(diǎn),點(diǎn)與點(diǎn)關(guān)于點(diǎn)對(duì)稱.

(Ⅰ)若點(diǎn)的坐標(biāo)為,求的值;
(Ⅱ)若橢圓上存在點(diǎn),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知分別是橢圓的左、右頂點(diǎn),點(diǎn)在橢圓上,且直線與直線的斜率之積為
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,已知是橢圓上不同于頂點(diǎn)的兩點(diǎn),直線交于點(diǎn),直線交于點(diǎn).① 求證:;② 若弦過橢圓的右焦點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的離心率,是其左右焦點(diǎn),點(diǎn)是直線(其中)上一點(diǎn),且直線的傾斜角為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓上兩點(diǎn),滿足,求為坐標(biāo)原點(diǎn))面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,A,B是橢圓的兩個(gè)頂點(diǎn), ,直線AB的斜率為.求橢圓的方程;(2)設(shè)直線平行于AB,與x,y軸分別交于點(diǎn)M、N,與橢圓相交于C、D,
證明:的面積等于的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線C:的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線與拋物線交于A、B兩點(diǎn).
(1)若,求線段中點(diǎn)M的軌跡方程;
(2)若直線AB的方向向量為,當(dāng)焦點(diǎn)為時(shí),求的面積;
(3)若M是拋物線C準(zhǔn)線上的點(diǎn),求證:直線的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線

(I)
(II)

查看答案和解析>>

同步練習(xí)冊(cè)答案