已知點(diǎn)Q(1,0)在橢圓C且橢圓C的離心率為

()求橢圓C的方程;

()過(guò)點(diǎn)P(m,0)作直線交橢圓C于點(diǎn)AB,△ABQ的垂心為T,是否存在實(shí)數(shù)m,使得垂心Ty軸上.若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓C:
x2
a2
+
y2
2
=1
焦點(diǎn)在x軸上,左、右頂點(diǎn)分別為A1、A,上頂點(diǎn)為B,拋物線C1、C2分別以A、B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O.C1與C2相交于直線y=
2
x
上一點(diǎn)P.
(Ⅰ)求橢圓C及拋物線C1、C2的方程;
(Ⅱ)若動(dòng)直線l與直線OP垂直,且與橢圓C交于不同兩點(diǎn)M、N,已知點(diǎn)Q(-
2
,0),求
QM
.
QN
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省雙流中學(xué)2012屆高三下學(xué)期第一次月考數(shù)學(xué)試題 題型:022

給出以下四個(gè)結(jié)論:

①若關(guān)于x的方程x-+k=0在x∈(0,1)沒(méi)有實(shí)數(shù)根,則k的取值范圍是k≥2.

②曲線y=1+(|x|≤2)與直線y=k(x-2)+4有兩個(gè)交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是().

③已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0兩側(cè),則3a-2b>1.

④若將函數(shù)f(x)=sin(2x-)的圖像向右平移(>0)個(gè)單位后變?yōu)榕己瘮?shù),則的最小值是

其中正確的結(jié)論是:________(把所有正確的判斷都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西省新余一中2012屆高三第三模擬考試數(shù)學(xué)文科試題 題型:044

如圖,橢圓C:=1的焦點(diǎn)在x軸上,左右頂點(diǎn)分別為A1,A,上頂點(diǎn)B,拋物線C1,C2分別以A,B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O,C1與C2相交于直線y=x上一點(diǎn)P.

(1)求橢圓C及拋物線C1,C2的方程;

(2)若動(dòng)直線l與直線OP垂直,且與橢圓C交于不同兩點(diǎn)M,N,已知點(diǎn)Q(-,0),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年北京市海淀區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的右焦點(diǎn)為F(1,0),且點(diǎn)(-1,)在橢圓C上.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)Q(,0),動(dòng)直線l過(guò)點(diǎn)F,且直線l與橢圓C交于A,B兩點(diǎn),證明:為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案