已知圓C的圓心在直線(xiàn)y=x+1上,且過(guò)點(diǎn)A(1,3),與直線(xiàn)x+2y-7=0相切.
(1)求圓C的方程;
(2)設(shè)直線(xiàn)l:ax-y-2=0(a>0)與圓C相交于A、B兩點(diǎn),求實(shí)數(shù)a的取值范圍.
【答案】分析:(1)設(shè)圓心C(a,b),由圓C的圓心在直線(xiàn)y=x+1上,且過(guò)點(diǎn)A(1,3),與直線(xiàn)x+2y-7=0相切,建立方程組求出圓心和半徑,由此能求出圓C的方程.
(2)把直線(xiàn)y=ax-2代入圓的方程,得(a2+1)x2-6ax+4=0,由直線(xiàn)ax-y+5=0交圓于A,B兩點(diǎn),知5a2-4>0,由此能求出實(shí)數(shù)a的取值范圍.
解答:解:(1)設(shè)圓心C(a,b),
∵圓C的圓心在直線(xiàn)y=x+1上,且過(guò)點(diǎn)A(1,3),與直線(xiàn)x+2y-7=0相切,

解得a=0,b=1,
∴圓心C(0,1),圓半徑r=|AC|==,
∴圓C的方程為x2+(y-1)2=5.(8分)
(2)把直線(xiàn)ax-y-2=0,即y=ax-2代入圓的方程x2+(y-1)2=5,
消去y整理,得(a2+1)x2-6ax+4=0,
∵直線(xiàn)ax-y+5=0交圓于A,B兩點(diǎn),
∴△=36a2-16(a2+1)>0.即5a2-4>0,
由于a>0,解得a>
所以實(shí)數(shù)a的取值范圍是(,+∞). (15分)
點(diǎn)評(píng):本題考查圓的方程的求法,考查滿(mǎn)足條件的實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心在直線(xiàn)x-3y=0上,且圓C與x軸相切,若圓C截直線(xiàn)y=x得弦長(zhǎng)為2
7
,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心在直線(xiàn)y=x+1上,且過(guò)點(diǎn)A(1,3),與直線(xiàn)x+2y-7=0相切.
(1)求圓C的方程;
(2)設(shè)直線(xiàn)l:ax-y-2=0(a>0)與圓C相交于A、B兩點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)在(Ⅱ)的條件下,是否存在實(shí)數(shù)a,使得弦AB的垂直平分線(xiàn)l過(guò)點(diǎn)P(-2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心在直線(xiàn)y=2x上,且與直線(xiàn)l:x+y+1=0相切于點(diǎn)P(-1,0).
(Ⅰ)求圓C的方程;
(Ⅱ)若A(1,0),點(diǎn)B是圓C上的動(dòng)點(diǎn),求線(xiàn)段AB中點(diǎn)M的軌跡方程,并說(shuō)明表示什么曲線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心在直線(xiàn)2x-y-3=0上,且經(jīng)過(guò)點(diǎn)A(5,2),B(3,2),
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)直線(xiàn)l過(guò)點(diǎn)P(2,1)且與圓C相交的弦長(zhǎng)為2
6
,求直線(xiàn)l的方程.
(3)設(shè)Q為圓C上一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),試求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心在直線(xiàn)l1:x-y-1=0上,與直線(xiàn)l2:4x+3y+14=0相切,且截得直線(xiàn)l3:3x+4y+10=0所得弦長(zhǎng)為6,求圓C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案