14.化簡:(2$\frac{1}{4}$)0.5+(0.1)-1-(2$\sqrt{2}$)${\;}^{-\frac{2}{3}}$-($\sqrt{3}$-1)0=10.

分析 直接利用有理指數(shù)冪運算法則化簡求解即可.

解答 解:(2$\frac{1}{4}$)0.5+(0.1)-1-(2$\sqrt{2}$)${\;}^{-\frac{2}{3}}$-($\sqrt{3}$-1)0
=$\frac{3}{2}$+10-$\frac{1}{2}$-1
=10.
故答案為:10.

點評 本題考查有理指數(shù)冪的運算法則的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知兩等差數(shù)列{an}、{bn}的前n項和分別為Sn、Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+3}{7n-2}$,則$\frac{{a}_{10}}{_{10}}$=(  )
A.$\frac{23}{68}$B.$\frac{41}{131}$C.$\frac{21}{61}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若關(guān)于x的方程ax2+bx+c=0(a≠0)的兩個實根為1或2,則函數(shù)f(x)=cx2+bx+a的零點為( 。
A.1,2B.-1,-2C.1,$\frac{1}{2}$D.-1,-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.?dāng)?shù)列x1,x2,…,xn,…滿足x1=$\frac{1}{3}$,xn+1=${{x}_{n}}^{2}$+xn(n∈N•),則$\frac{1}{{x}_{1}+1}$+$\frac{1}{{x}_{2}+1}$+…+$\frac{1}{{x}_{2013}+1}$的整數(shù)部分是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)一個半球的半徑為R,則其內(nèi)接圓柱的最大側(cè)面積是πR2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)y=f(x)是奇函數(shù),根據(jù)y=f(x)在[0,5]上的圖象作出y=f(x)在[-5,0)上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.命題p:已知f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,且函數(shù)F(x)=f(x)+x-a有且僅有兩個零點;命題q:在x∈[1,2]內(nèi),不等式x2+2ax-2>0恒成立,若p且q為真,求參數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求直線l1:2x+y-4=0關(guān)于直線l:x-y+2=0對稱的直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.求函數(shù)y=$\frac{1{0}^{x}-1{0}^{-x}}{1{0}^{x}+1{0}^{-x}}$的反函數(shù).

查看答案和解析>>

同步練習(xí)冊答案