已知數(shù)列{an}前n項和為Sn,且a2an=S2+Sn對一切正整數(shù)都成立.
(1)求a1,a2的值;
(2)設a1>0,數(shù)列前n項和為Tn,當n為何值時,Tn最大?并求出最大值.
科目:高中數(shù)學 來源: 題型:解答題
設等差數(shù)列的前n項和為,且,
(1).求數(shù)列的通項公式;
(2).若成等比數(shù)列,求正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an},,,記,,
,若對于任意,A(n),B(n),C(n)成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{|an|}的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知各項均為正數(shù)的等比數(shù)列{an}的公比為q,且0<q<.
(1)在數(shù)列{an}中是否存在三項,使其成等差數(shù)列?說明理由;
(2)若a1=1,且對任意正整數(shù)k,ak-(ak+1+ak+2)仍是該數(shù)列中的某一項.
(ⅰ)求公比q;
(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,試用S2011表示T2011.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an}的前n項和為Sn,且滿足Sn-Sn-1+2SnSn-1=0(n≥2),a1=.
(1)求證:是等差數(shù)列;
(2)求an的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,首項為a1,且,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若=,設cn=,求數(shù)列{cn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設{an}是公比為正數(shù)的等比數(shù)列,a1=2,a3=a2+4,
(1)求{an}的通項公式;
(2)設{bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知Sn是等比數(shù)列{an}的前n項和,S4,S2,S3成等差數(shù)列,且a2+a3+a4=-18.
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)n,使得Sn≥2 013?若存在,求出符合條件的所有n的集合;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com