設(shè)函數(shù)y=f(x)在區(qū)間D上的導(dǎo)數(shù)為f'(x),f'(x)在區(qū)間D上的導(dǎo)數(shù)為g(x),若在區(qū)間D上,g(x)<0恒成立,則稱函數(shù)y=f(x)在區(qū)間D上為“凸函數(shù)”已知實數(shù)m是常數(shù),f(x)=
x4
12
-
mx3
6
-
3x2
2

(1)若y=f(x)在區(qū)間[0,3]上為“凸函數(shù)”,求m的取值范圍;
(2)若對滿足|m|≤2的任何一個實數(shù)m,函數(shù)f(x)在區(qū)間(a,b)上都為“凸函數(shù)”,求b-a的最大值.
分析:(1)由題意可得g(x)<0在[0,3]上恒成立?
g(0)<0
g(3)<0
,解得m即可;
(2)令p(m)=g(x)=-xm+x2-3<0對?m∈[-2,2]上恒成立?
p(-2)<0
p(2)<0
,即轉(zhuǎn)化為看作關(guān)于m的一次函數(shù),利用其單調(diào)性即可解得x即可.
解答:解:f(x)=
1
3
x3-
1
2
mx2-3x
,g(x)=x2-mx-3.
(1)由題意可得g(x)<0在[0,3]上恒成立,
g(0)<0
g(3)<0
,解得m>2.
∴m的取值范圍是(2,+∞);
(2)令p(m)=g(x)=-xm+x2-3<0對?m∈[-2,2]上恒成立,
p(-2)<0
p(2)<0
,解得-1<x<1.
∴(b-a)max=1-(-1)=2.
點(diǎn)評:正確把問題等價轉(zhuǎn)化和熟練掌握導(dǎo)數(shù)的運(yùn)算法則、一次函數(shù)和二次函數(shù)等是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義.對于給定的正數(shù)K,定義函數(shù) fk(x)=
f(x),f(x)≤K
K,f(x)>K
,取函數(shù)f(x)=2-x-e-x.若對任意的x∈(+∞,-∞),恒有fk(x)=f(x),則( 。
A、K的最大值為2
B、K的最小值為2
C、K的最大值為1
D、K的最小值為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義,對于給定的正數(shù)K,定義函數(shù):fK(x)=
f(x)
1
f(x)
f(x)≤K
 
f(x)>K
,取函數(shù)f(x)=(
1
2
)|x|
,當(dāng)K=
1
2
時,函數(shù)fK(x)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(a,b)上的導(dǎo)數(shù)為f′(x),f′(x)在(a,b)上的導(dǎo)數(shù)為f″(x),若在(a,b)上,f″(x)<0恒成立,則稱函數(shù)f(x)在(a,b)上為“凸函數(shù)”.若函數(shù)f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
為區(qū)間(-1,3)上的“凸函數(shù)”,則m=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(-∞,+∞)上滿足f(-x)=f(4+x),f(4-x)=f(10+x),且在閉區(qū)間[0,7]上,f(x)=0僅有兩個根x=1和x=3,則方程f(x)=0在閉區(qū)間[-2011,2011]上根的個數(shù)有
805
805

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義.對于給定的正數(shù)K,定義函數(shù)fk(x)=
f(x),f(x)≥K
K,f(x)<K
,取函數(shù)f(x)=2+x+e-x.若對任意的x∈(+∞,-∞),恒有fk(x)=f(x),則(  )

查看答案和解析>>

同步練習(xí)冊答案