3.某電腦公司2016年的各項經(jīng)營總收入中電腦配件的收入為40萬元,占全年經(jīng)營總收入的40%,該公司預(yù)計2018年經(jīng)營總收入要達(dá)到169萬元,且計劃從2016年到2018年每年經(jīng)營總收入的年增長率相同,則2017年預(yù)計經(jīng)營總收入為130萬元.

分析 增長率問題的一般形式為a(1+x)2=b,a為起始時間的有關(guān)數(shù)量,b為終止時間的有關(guān)數(shù)量.本題中a就是2016年的經(jīng)營收入,b就是2018年的經(jīng)營收入,從而可求出增長率的值,進(jìn)而可求2017年預(yù)計經(jīng)營總收入.

解答 解:2016年的經(jīng)營總收入為400÷40%=1000(萬元).
設(shè)年增長率為x(x>0),依題意得,1000(1+x)2=169,
解得:x1=0.3,x2=-2.3,
∵x>0
∴x2=-2.3不合題意,
∴只取x1=0.3.
1000(1+x)=1000×1.3=130(萬元).
即2017年預(yù)計經(jīng)營總收入為130萬元.
故答案為:130.

點評 本題以實際問題為載體,考查增長率問題.解決此類兩次變化問題,可利用公式a(1+x)2=b,其中a是變化前的原始量,b是兩次變化后的量,x表示平均每次的增長率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,在熱氣球C正前方有一高為m的建筑物AB,在建筑物底部A測得C的仰角為60°,同時在C處測得建筑物頂部B的仰角為30°,則此時熱氣球的高度CD為(  )
A.$\sqrt{2}m$B.$\sqrt{3}m$C.$\frac{{3\sqrt{3}}}{2}m$D.$\frac{3}{2}m$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={-1,0,1,2,3},B={x|(x+1)(x-2)<0,x∈Z},則A∩B=( 。
A.{1}B.{0,1}C.{-1,0,1,2}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知冪函數(shù)f(x)=λ•xα的圖象過點$P(\frac{1}{2},\frac{{\sqrt{2}}}{2})$,則λ+α=( 。
A.2B.1C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.要得到函數(shù)$y=3sin(2x+\frac{π}{3})$圖象,只需要將函數(shù)$y=3cos(2x-\frac{π}{3})$的圖象( 。
A.向左平移$\frac{π}{12}$個單位B.向右平移$\frac{π}{12}$個單位
C.向左平移$\frac{π}{6}$個單位D.向右平移$\frac{π}{6}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知全集U={1,2,3,4,5,6,7,8},A={2,3,5,6},B={1,3,4,6,7},M={x|x∈A,且x∉B},則M=(  )
A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知偶函數(shù)f(x)在(0,+∞)單調(diào)遞減,f(2)=0,若f(x-1)<0,則x的取值范圍是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)已知sinxcosx=$\frac{1}{2}$,求tanx+$\frac{1}{tanx}$及tanx的值;
(2)已知tanα=2,求sin2α-3sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:“?x∈R,x2-x+2≥0”,則¬p是(  )
A.?x∉R,x2-x+2>0B.?x0∈R,x02-x0+2≤0
C.?x0∈R,$x_0^2-{x_0}+2<0$D.?x0∉R,$x_0^2-{x_0}+2≤0$

查看答案和解析>>

同步練習(xí)冊答案