A. | 2 | B. | -4 | C. | 0 | D. | 4 |
分析 令g(x)=ln$\frac{1+x}{1-x}$,則g(x)為奇函數(shù),可得g(x)max+g(x)min=0,從而可求M+m的值.
解答 解:令g(x)=ln$\frac{1+x}{1-x}$,x∈[-$\frac{1}{2}$,$\frac{1}{2}$],
則g(-x)=ln$\frac{1-x}{1+x}$=-ln$\frac{1+x}{1-x}$=-g(x),
即g(x)為奇函數(shù),
∴g(x)max+g(x)min=0,
∵2+ln$\frac{1+x}{1-x}$,x∈[-$\frac{1}{2}$,$\frac{1}{2}}$]的最大值與最小值分別為M,m,
∴M+m=4.
故選:D
點(diǎn)評 本題考查函數(shù)的最值,考查函數(shù)的奇偶性,考查學(xué)生分析解決問題的能力,求出g(x)max+g(x)min=0是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,40] | B. | [160,+∞) | C. | (-∞,40)∪(160,+∞) | D. | (-∞,40]∪[160,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com