17.若函數(shù)y=2+ln$\frac{1+x}{1-x}$,x∈[-$\frac{1}{2}$,$\frac{1}{2}}$]的最大值與最小值分別為M,m,則M+m=( 。
A.2B.-4C.0D.4

分析 令g(x)=ln$\frac{1+x}{1-x}$,則g(x)為奇函數(shù),可得g(x)max+g(x)min=0,從而可求M+m的值.

解答 解:令g(x)=ln$\frac{1+x}{1-x}$,x∈[-$\frac{1}{2}$,$\frac{1}{2}$],
則g(-x)=ln$\frac{1-x}{1+x}$=-ln$\frac{1+x}{1-x}$=-g(x),
即g(x)為奇函數(shù),
∴g(x)max+g(x)min=0,
∵2+ln$\frac{1+x}{1-x}$,x∈[-$\frac{1}{2}$,$\frac{1}{2}}$]的最大值與最小值分別為M,m,
∴M+m=4.
故選:D

點(diǎn)評 本題考查函數(shù)的最值,考查函數(shù)的奇偶性,考查學(xué)生分析解決問題的能力,求出g(x)max+g(x)min=0是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)y=($\frac{1}{2}$)|x+1|的值域是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓,離心率為$\frac{{\sqrt{6}}}{3}$且過點(diǎn)(${\sqrt{5}$,0),過定點(diǎn)C(-1,0)的動(dòng)直線與該橢圓相交于A、B兩點(diǎn).
(1)若線段AB中點(diǎn)的橫坐標(biāo)是-$\frac{1}{2}$,求直線AB的方程;
(2)在x軸上是否存在點(diǎn)M,使$\overrightarrow{MA}$•$\overrightarrow{MB}$為常數(shù)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a=20.3,b=log20.3,c=0.32,則( 。
A.c<b<aB.b<c<aC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=4x2-kx-8在[5,20]上具有單調(diào)性,則實(shí)數(shù)k的取值范圍是( 。
A.(-∞,40]B.[160,+∞)C.(-∞,40)∪(160,+∞)D.(-∞,40]∪[160,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.計(jì)算下列各式的值:
(1)0.0625${\;}^{\frac{1}{4}}}$+[(-3)4]${\;}^{\frac{1}{4}}}$-($\sqrt{5}$-$\sqrt{3}}$)0+$\root{3}{{3\frac{3}{8}}}$;
(2)(lg2)2+lg2•lg5+$\sqrt{{{({lg2})}^2}-2lg2+1}$+log45•log54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.隨機(jī)抽取了40輛汽車在經(jīng)過路段上某點(diǎn)時(shí)的車速(km/h),現(xiàn)將其分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后得到如圖所示的頻率分布直方圖.
(1)現(xiàn)有某汽車途經(jīng)該點(diǎn),則其速度低于80km/h的概率約是多少?
(2)根據(jù)直方圖可知,抽取的40輛汽車經(jīng)過該點(diǎn)的平均速度約是多少?
(3)在抽取的40輛且速度在[60,70)(km/h)內(nèi)的汽車中任取2輛,求這2輛車車速都在[65,70)(km/h)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=$\frac{1}{2}$x2-$\frac{1}{3}$ex3,g(x)=f(x)+ex(x-1)
(1)求函數(shù)f(x)極值;
(2)求g(x)單調(diào)區(qū)間,
(3)求證:x>0時(shí),不等式g′(x)≥1+lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{1}{2}$ax2+lnx,a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案