過(guò)點(diǎn)Q(-2,數(shù)學(xué)公式) 作圓C:x2+y2=r2(r>0)的切線,切點(diǎn)為D,且QD=4.
(1)求γ的值;
(2)設(shè)P是圓C上位于第一象限內(nèi)的任意一點(diǎn),過(guò)點(diǎn)P作圓C的切線l,且l交x軸于點(diǎn)A,交y 軸于點(diǎn)B,設(shè)數(shù)學(xué)公式=數(shù)學(xué)公式+數(shù)學(xué)公式,求|數(shù)學(xué)公式|的最小值(O為坐標(biāo)原點(diǎn)).

解:(1)圓C:x2+y2=r2(r>0)的圓心為O(0,0),則
∵過(guò)點(diǎn)Q(-2,) 作圓C:x2+y2=r2(r>0)的切線,切點(diǎn)為D,且QD=4
∴r=OD===3;
(2)設(shè)直線l的方程為(a>0,b>0),即bx+ay-ab=0,則A(a,0),B(0,b),
=+,∴=(a,b),∴=
∵直線l與圓C相切,∴
∴3=ab≤
∴a2+b2≥36

當(dāng)且僅當(dāng)時(shí),的最小值為6.
分析:(1)利用圓的切線的性質(zhì),結(jié)合勾股定理,可求r的值;
(2)設(shè)出直線方程,利用=+,表示出,求出模長(zhǎng),利用基本不等式即可求得結(jié)論.
點(diǎn)評(píng):本題考查圓的切線的性質(zhì),考查向量知識(shí)的運(yùn)用,考查基本不等式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:0101 月考題 題型:解答題

過(guò)點(diǎn)Q(-2,)作圓C:x2+y2=r2(r>0)的切線,切點(diǎn)為D,且QD=4,
(1)求r的值;
(2)設(shè)P是圓C上位于第一象限內(nèi)的任意一點(diǎn),過(guò)點(diǎn)P作圓C的切線l,且l交x軸于點(diǎn)A,交y 軸于點(diǎn)B,設(shè),求的最小值(O為坐標(biāo)原點(diǎn))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)坐標(biāo)系中,已知一個(gè)圓心在坐標(biāo)原點(diǎn),半徑為2的圓,從這個(gè)圓上任意一點(diǎn)P向y軸作垂線段為垂足.

(1)求線段中點(diǎn)M的軌跡C的方程;

(2)過(guò)點(diǎn)Q(一2,0)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過(guò)點(diǎn)(,0),且以言為方向向量的直線上一動(dòng)點(diǎn),滿足 (O為坐標(biāo)原點(diǎn)),問(wèn)是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)坐標(biāo)系中,已知一個(gè)圓心在坐標(biāo)原點(diǎn),半徑為2的圓,從這個(gè)圓上任意一點(diǎn)P向y軸作垂線段為垂足.

(1)求線段中點(diǎn)M的軌跡C的方程;

(2)過(guò)點(diǎn)Q(一2,0)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過(guò)點(diǎn)(,0),且以言為方向向量的直線上一動(dòng)點(diǎn),滿足 (O為坐標(biāo)原點(diǎn)),問(wèn)是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省寧波市余姚中學(xué)高二(上)第一次質(zhì)量檢測(cè)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

過(guò)點(diǎn)Q(-2,) 作圓C:x2+y2=r2(r>0)的切線,切點(diǎn)為D,且QD=4.
(1)求γ的值;
(2)設(shè)P是圓C上位于第一象限內(nèi)的任意一點(diǎn),過(guò)點(diǎn)P作圓C的切線l,且l交x軸于點(diǎn)A,交y 軸于點(diǎn)B,設(shè)=+,求||的最小值(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

同步練習(xí)冊(cè)答案