若f(x)=cosx,則(x)等于

[  ]

A.sinx

B.-sinx

C.cosx

D.-cosx

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:江蘇省梅村高級(jí)中學(xué)2012屆高三1月雙周練數(shù)學(xué)試題 題型:044

已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:

,

其中,min{f(x)|x∈D}表示函數(shù)f(x)在區(qū)間上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在區(qū)間上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱(chēng)函數(shù)為區(qū)間[a,b]上的“k階收縮函數(shù)”.

(1)若f(x)=cosx,x∈[0,π],試寫(xiě)出f1(x),f2(x)的表達(dá)式;

(2)已知函數(shù)f(x)=x2,x∈[-1,4],試判斷f(x)是否為[-1,4]上的“k階收縮函數(shù)”,如果是,求出相應(yīng)的k;如果不是,請(qǐng)說(shuō)明理由;

(3)已知b>0函數(shù)f(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知=(cosx+sinx,sinx),=(cosx-sinx,2cosx),(Ⅰ)求證:向量與向量不可能平行;(Ⅱ)若f(x)=·,且x∈[-,]時(shí),求函數(shù)f(x)的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:福建省2010屆高三數(shù)學(xué)(理)熱身考試卷 題型:解答題

已知=(cosx+sinx,sinx),=(cosx-sinx,2cosx),

(Ⅰ)求證:向量與向量不可能平行;(Ⅱ)若f(x)=·,且x∈[-,]時(shí),求函數(shù)f(x)的最大值及最小值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx+cosx,f′(x)是f(x)的導(dǎo)函數(shù),

(1)求函數(shù)F(x)=f(x)f′(x)+f2(x)的值域和最小正周期;

(2)若f(x)=2f′(x),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案