已知集合A={x|
x-1
x+1
≥0},B={x|2a<x≤a+1},若B⊆A,求實(shí)數(shù)a的取值范圍.
考點(diǎn):其他不等式的解法,集合的包含關(guān)系判斷及應(yīng)用
專題:計(jì)算題,分類討論,不等式的解法及應(yīng)用,集合
分析:分別求出A中其他不等式的解集,根據(jù)B為A的子集,對B討論,若B=∅,若B≠∅,列出關(guān)于a的不等式,求出不等式的解集最后求并集,即可得到a的范圍.
解答: 解:集合A={x|
x-1
x+1
≥0}={x|x≥1或x<-1},
由于B⊆A,
則若B=∅,即有2a≥a+1,解得a≥1;
若B≠∅,則
a+1>2a
a+1<-1
2a<a+1
2a≥1
,即a<-2或
1
2
≤a<1.
綜上,可得a
1
2
或a<-2.
故實(shí)數(shù)a的取值范圍是:(-∞,-2)∪[
1
2
,+∞).
點(diǎn)評:本題考查其它不等式的解法,考查集合的包含關(guān)系和運(yùn)用,考查分類討論的思想方法,屬于中檔題和易錯題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上三點(diǎn)A,B,C滿足(
BC
+
BA
)•
AC
=0,則△ABC的形狀是( 。
A、等邊三角形
B、等腰三角形
C、直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={0,1,2},則集合B={x-y|x∈A,y∈A}的子集個數(shù)是( 。
A、5B、8C、16D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
2-x
+lg(x+2)的定義域是(  )
A、(-∞,-2)
B、(2,+∞)
C、(-2,2)∪(2,+∞)
D、(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z=(a-i)(1+2i)(a∈R,i為虛數(shù)單位),若復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在實(shí)軸上,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

{an}是由實(shí)數(shù)構(gòu)成的無窮等比數(shù)列,Sn=a1+a2+…+an,關(guān)于數(shù)列{Sn},給出下列命題:
(1)數(shù)列{Sn}中任意一項(xiàng)均不為0;
(2)數(shù)列{Sn}中必有一項(xiàng)為0;
(3)數(shù)列{Sn}中或者任意一項(xiàng)均不為0,或者有無窮多項(xiàng)為0;
(4)數(shù)列{Sn}中一定不可能出現(xiàn)Sn=Sn+2
(5)數(shù)列{Sn}中一定不可能出現(xiàn)Sn=Sn+3;
則其中正確的命題是
 
.(把正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+2=
an-
1
an+1
an+1≠0
0,an+1=0
,若數(shù)列{an}中使得am=0的最小的m=60,求a1a2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|(x+1)(x-5)<0},B={x|mx2-m2x+m+3<0},若A∩B=(1,5),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,有4個半徑都為1的圓,其圓心分別為O1(0,0),O2(2,0),O3(0,2),O4(2,2).記集合M={⊙Oi|i=1,2,3,4}.若A,B為M的非空子集,且A中的任何一個圓與B中的任何一個圓均無公共點(diǎn),則稱 (A,B) 為一個“有序集合對”(當(dāng)A≠B時,(A,B) 和 (B,A) 為不同的有序集合對),那么M中“有序集合對”(A,B) 的個數(shù)是( 。
A、2B、4C、6D、8

查看答案和解析>>

同步練習(xí)冊答案