已知命題p:x∈[1,2],x2-a≥0;命題q:x0∈R,使得x+(a-1)x0+1<0.若“p或q”為真,“p且q”為假,求實(shí)數(shù)a的取值范圍。
.
解析試題分析:本題首先以為真分別求出對(duì)應(yīng)的參數(shù)的取值范圍,然后通過(guò)分析“”為真,“”為假可知:中一真一假,分情況討論即可.
試題解析:真,則, 2分
真,則 4分
因?yàn)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/1f/8/1t8kp3.png" style="vertical-align:middle;" />”為真,“”為假可知:中一真一假 6分
當(dāng)真假, 10分
當(dāng)真假,
所以,的取值范圍是 12分
考點(diǎn):1.復(fù)合命題的真假;2.解不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
給定兩個(gè)命題,P:對(duì)任意實(shí)數(shù)x都有x2+x+1>0恒成立;Q:關(guān)于x的方程x2-x+=0有實(shí)數(shù)根.如果P∨Q為真命題,P∧Q為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè):方程有兩個(gè)不等的負(fù)根,:方程無(wú)實(shí)根,若p或q為真,p且q為假,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知方程有兩個(gè)不相等的負(fù)實(shí)根;不等式的解集為.若“∨”為真命題,“∧”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè):“”,:“函數(shù)在上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/31/e/avmu82.png" style="vertical-align:middle;" />”,若“”是假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)命題p:函數(shù)的定義域?yàn)镽;命題q:對(duì)一切的實(shí)數(shù)恒成立,如果命題“p且q”為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,設(shè)命題:函數(shù)在區(qū)間上與軸有兩個(gè)不同的交點(diǎn);命題:在區(qū)間上有最小值.若是真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)已知條件:和條件:,請(qǐng)選取適當(dāng)?shù)膶?shí)數(shù)的值,分別利用所給的兩個(gè)條件作為、構(gòu)造命題“若則”,并使得構(gòu)造的原命題為真命題,而其逆命題為假命題,則這樣的一個(gè)原命題可以是什么?并說(shuō)明為什么這一命題是符合要求的命題.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com