某小賣(mài)部為了了解熱茶銷售量y(杯)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天賣(mài)出的熱茶的杯數(shù)與當(dāng)天氣溫,并制作了對(duì)照表:
氣溫(℃) 18 13 10 -1
杯數(shù) 14 24 28 54
由表中數(shù)據(jù)算得線性回歸方程
y
=bx+a中的b≈-2,預(yù)測(cè)當(dāng)氣溫為-5℃時(shí),熱茶銷售量為
 
杯.
考點(diǎn):線性回歸方程
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:先計(jì)算樣本中心點(diǎn),再求出線性回歸方程,進(jìn)而利用方程進(jìn)行預(yù)測(cè).
解答: 解:由題意,
.
x
=
18+13+10-1
4
=10,
.
y
=
14+24+28+54
4
=30,
將b≈-2及(10,30)代入線性回歸方程
y
=bx+a,可得a=50,
∴x=-5時(shí),y=-2×(-5)+50=60.
故答案為:60.
點(diǎn)評(píng):本題考查線性回歸方程,考查利用線性回歸方程進(jìn)行預(yù)測(cè),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若已知數(shù)列{an}是首項(xiàng)為6-12t,公差為6的等差數(shù)列;數(shù)列{bn}的前n項(xiàng)和為Sn=3n-t.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若數(shù)列{bn}是等比數(shù)列.試證明:對(duì)于任意的n(n∈N*,n≥1),均存在正整數(shù)cn,使得bn+1=acn,并求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足an+an+1=n+
1
2

(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn;
(3)若a1,am,a3m成等比數(shù)列,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,且有|an+1|=|an+1|.
(1)寫(xiě)出a3所有可能的值;
(2)是否存在一個(gè)數(shù)列{an}滿足:對(duì)于任意正整數(shù)n,都有an+6=an成立?若有,請(qǐng)寫(xiě)出這個(gè)數(shù)列的前6項(xiàng),若沒(méi)有,說(shuō)明理由;
(3)求|a1+a2+…+a10|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從-3、-2、-1、1、2、3中任取三個(gè)不同的數(shù)作為橢圓方程ax2+by2-c=0中的系數(shù),則確定不同的橢圓的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)原點(diǎn)O任作一條直線與圓C:x2+y2-2x-4y+4=0相交于A,B,則|OA|•|OB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)=(
5
2
x,若對(duì)任意的x∈[a,a+l],不等式f(x+a)≥f2(x)恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定積分
e
1
1
x
dx-
1
0
sinxdx的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b∈R,則“a+b>0且ab>0”是“a>0且b>0”成立的(  )
A、充分不必要
B、必要不充分
C、充要條件
D、既不充分也不必要

查看答案和解析>>

同步練習(xí)冊(cè)答案