【題目】已知函數(shù)f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)為f(x)的導(dǎo)函數(shù),求g(x)單調(diào)區(qū)間;
(2)已知函數(shù)f(x)在x=1處取得極大值,求實(shí)數(shù)a取值范圍.

【答案】
(1)解:由f′(x)=ln x﹣2ax+2a,

可得g(x)=ln x﹣2ax+2a,x∈(0,+∞),

所以g′(x)= ﹣2a= ,

當(dāng)a≤0,x∈(0,+∞)時(shí),g′(x)>0,函數(shù)g(x)單調(diào)遞增;

當(dāng)a>0,x∈(0, )時(shí),g′(x)>0,函數(shù)g(x)單調(diào)遞增,

x∈( ,+∞)時(shí),g′(x)<0,函數(shù)g(x)單調(diào)遞減.

所以當(dāng)a≤0時(shí),g(x)的單調(diào)增區(qū)間為(0,+∞);

當(dāng)a>0時(shí),g(x)的單調(diào)增區(qū)間為(0, ),單調(diào)減區(qū)間為( ,+∞)


(2)解:由(1)知,f′(1)=0.

①當(dāng)0<a< 時(shí), >1,由(1)知f′(x)在(0, )內(nèi)單調(diào)遞增,

可得當(dāng)x∈(0,1)時(shí),f′(x)<0,當(dāng)x∈(1, )時(shí),f′(x)>0.

所以f(x)在(0,1)內(nèi)單調(diào)遞減,在(1, )內(nèi)單調(diào)遞增,

所以f(x)在x=1處取得極小值,不合題意.

②當(dāng)a= 時(shí), =1,f′(x)在(0,1)內(nèi)單調(diào)遞增,在(1,+∞)內(nèi)單調(diào)遞減,

所以當(dāng)x∈(0,+∞)時(shí),f′(x)≤0,f(x)單調(diào)遞減,不合題意.

③當(dāng)a> 時(shí),0< <1,當(dāng)x∈( ,1)時(shí),f′(x)>0,f(x)單調(diào)遞增,

④a≤0時(shí),x∈(0,1)時(shí),f′(x)<0,x∈(1,+∞)時(shí),f′(x)>0,

故f(x)在x=1處取極小值,不合題意;

當(dāng)x∈(1,+∞)時(shí),f′(x)<0,f(x)單調(diào)遞減.

所以f(x)在x=1處取極大值,符合題意.

綜上可知,實(shí)數(shù)a的取值范圍為( ,+∞)


【解析】(1)先求的函數(shù)f(x)的導(dǎo)函數(shù)g(x),再由g(x)的導(dǎo)函數(shù)求得g(x)的單調(diào)區(qū)間;(2)函數(shù)f(x)在x=1處取得極大值,那么當(dāng)x<1時(shí)
f′(x)>0,當(dāng)x>1時(shí)f′(x)<0,然后對(duì)a進(jìn)行分類討論,最后求得實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“a=﹣1”是“直線ax+3y+2=0與直線x+(a﹣2)y+1=0平行”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 底面, , .

1)求直線所成角的大;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的個(gè)數(shù)是( )
①函數(shù)f(x)=2x﹣x2的零點(diǎn)有2個(gè);
②函數(shù)y=sin(2x+ )sin( ﹣2x)的最小正周期是π;
③命題“函數(shù)f(x)在x=x0處有極值,則f′(x0)=0”的否命題是真命題;
dx=
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2+2ax﹣a﹣1,x∈[0,2],a為常數(shù).
(1)用g(x)表示f(x)的最小值,求g(a)的解析式;
(2)在(1)中,是否存在最小的整數(shù)m,使得g(a)﹣m≤0對(duì)于任意a∈R均成立,若存在,求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB∥CD,且AB=2AD,設(shè)∠DAB=θ,θ∈(0, ),以A,B為焦點(diǎn)且過點(diǎn)D的雙曲線的離心率為e1 , 以C,D為焦點(diǎn)且過點(diǎn)A的橢圓的離心率為e2 , 則( )

A.隨著角度θ的增大,e1增大,e1e2為定值
B.隨著角度θ的增大,e1減小,e1e2為定值
C.隨著角度θ的增大,e1增大,e1e2也增大
D.隨著角度θ的增大,e1減小,e1e2也減小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓軸相切于點(diǎn),且圓心在直線上.

(Ⅰ)求圓的標(biāo)準(zhǔn)方程;

(II)設(shè)為圓上的兩個(gè)動(dòng)點(diǎn), ,若直線的斜率之積為定值2,試探求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖像與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過這三點(diǎn)的圓記為

(1)求圓的方程;

(2)若過點(diǎn)的直線與圓相交,所截得的弦長(zhǎng)為4,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求不等式的解集;

(2)函數(shù)若存在使得成立,求實(shí)數(shù)的取值范圍;

(3)若函數(shù)討論函數(shù)的零點(diǎn)個(gè)數(shù)(直接寫出答案,不要求寫出解題過程).

查看答案和解析>>

同步練習(xí)冊(cè)答案