如圖,已知⊙O是的外接圓,是邊上的高,是⊙O的直徑.
(1)求證:;
(2)過(guò)點(diǎn)作⊙O的切線交的延長(zhǎng)線于點(diǎn),若,求的長(zhǎng).
(I)詳見解析;(II)3.
解析試題分析:(I)求證線段的比例關(guān)系,一般考慮證明三角形相似,AE是直徑,直徑所對(duì)的圓周角是直角,所以連接BE(AE),證明∽或者證明∽;(II)根據(jù)弦切線定理,可求得AB的長(zhǎng),在由∽易求得AC的長(zhǎng).
試題解析:(I)證明:連結(jié),由題意知為直角三角形.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/16/6/od28g1.png" style="vertical-align:middle;" />所以∽,
則,則.又,所以,
(II)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3e/0/12qnb3.png" style="vertical-align:middle;" />是⊙O的切線,所以,
又,所以.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/56/c/rpvpo.png" style="vertical-align:middle;" />,所以∽
則,即.
考點(diǎn):1、三角形相似的判定和性質(zhì) ; 2、圓的性質(zhì) ;3、弦切線定理的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線AB為圓O的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D.
(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC=,延長(zhǎng)CE交AB于點(diǎn)F,求△BCF外接圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,己知為的邊上一點(diǎn),經(jīng)過(guò)點(diǎn),交于另一點(diǎn),經(jīng)過(guò)點(diǎn),,交于另一點(diǎn),與的另一交點(diǎn)為.
(I)求證:四點(diǎn)共圓;
(II)若切于,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知切⊙于點(diǎn)E,割線PBA交⊙于A、B兩點(diǎn),∠APE的平分線和AE、BE分別交于點(diǎn)C、D.
求證:(Ⅰ); (Ⅱ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是的直徑,弦與垂直,并與相交于點(diǎn),點(diǎn)為弦上異于點(diǎn)的任意一點(diǎn),連結(jié)、并延長(zhǎng)交于點(diǎn)、.
⑴ 求證:、、、四點(diǎn)共圓;
⑵ 求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是圓的直徑,、在圓上,、的延長(zhǎng)線交直線于點(diǎn)、, 求證:
(Ⅰ)直線是圓的切線;
(Ⅱ)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是圓的內(nèi)接四邊形,,過(guò)點(diǎn)的圓的切線與的延長(zhǎng)線交于點(diǎn),證明:
(Ⅰ)
(II)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
[選修4 - 1:幾何證明選講](本小題滿分10分)
如圖,在梯形中,∥BC,點(diǎn),分別在邊,上,設(shè)與相交于點(diǎn),若,,,四點(diǎn)共圓,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com