15.若關(guān)于x的一元二次方程3x2+2ax+1=0沒有實數(shù)根,則a的取值范圍是( 。
A.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)B.(-$\sqrt{3}$,$\sqrt{3}$)C.[-$\sqrt{3}$,$\sqrt{3}$]D.[-3,3]

分析 若關(guān)于x的一元二次方程3x2+2ax+1=0沒有實數(shù)根,則△=4a2-12<0,解得答案.

解答 解:若關(guān)于x的一元二次方程3x2+2ax+1=0沒有實數(shù)根,
則△=4a2-12<0,
解得:a∈(-$\sqrt{3}$,$\sqrt{3}$),
故選:B

點評 本題考查的知識點是一元二次方程根的存在性及個數(shù)判斷,難度不大,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=lnx+ln(2-x)+ax(a>0).
(1)當a=1時,求f(x)的單調(diào)區(qū)間.
(2)若f(x)在(0,1]上的最大值為2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=alnx+$\frac{1}{bx}$(a,b∈R)在點(1,f(1))處的切線方程為x-2y=0.
(1)求a,b的值;
(2)當x>1時,f(x)-kx<0恒成立,求實數(shù)k的取值范圍;
(3)證明:當n∈N*,且n≥2時,$\frac{1}{2ln2}$+$\frac{1}{3ln3}$+$\frac{1}{4ln4}$+…+$\frac{1}{nlnn}$>$\frac{{3{n^2}-n-2}}{{2{n^2}+2n}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知A,B是橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點,M是E上不同于A,B的任意一點,若直線AM,BM的斜率之積為-$\frac{4}{9}$,則E的離心率為(  )
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{2}{3}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.過(4,0)的直線與拋物線y2=4x交于A(x1y1),B(x2,y2)兩點.
(1)求證:x1x2,y1y2均為定值.
(2)求證:以線段AB為直徑的圓經(jīng)過一定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知關(guān)于x的不等式|x+1|+|x|≥k恒成立,則實數(shù)k的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)y=16-x2,那么當x∈(-∞,-4)∪(4,+∞)時,y<0;當x±4時,y=0;當x(-4,4)時,y>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知(x2+2x+2)5=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,則$\sum_{i=1}^{10}{a}_{i}$的值為31.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.對任意實數(shù)x,矩陣$[\begin{array}{l}{x}&{2+m}\\{3-m}&{3}\end{array}]$總存在特征向量,則m的取值范圍是[-2,3].

查看答案和解析>>

同步練習冊答案