【題目】設(shè)整數(shù)數(shù)列{an}共有2n)項,滿足,,且).

(1)當時,寫出滿足條件的數(shù)列的個數(shù);

(2)當時,求滿足條件的數(shù)列的個數(shù).

【答案】(1)8;(2).

【解析】

1)當確定時,可確定,再逆推可知種取法;再依據(jù)可知各有種取法;由于有關(guān),當確定時,必然隨之確定,故根據(jù)分步乘法計數(shù)原理,可得數(shù)列個數(shù)為;(2)設(shè),且,可推得:;又,可推得:;用表示中值為的項數(shù)可知的取法數(shù)為,再任意指定的值,有種,可知數(shù)列有個;再化簡,可得最終結(jié)果.

(1)時,

確定時,有唯一確定解

,可知種取法

,則,則種取法

此時,也有種取法

,當確定時,隨之確定

故所有滿足條件的數(shù)列共有:

滿足條件的所有的數(shù)列的個數(shù)為

(2)設(shè),則由

,則:

表示中值為的項數(shù)

由②可知也是中值為的項數(shù),其中

所以的取法數(shù)為

確定后,任意指定的值,有

由①式可知,應(yīng)取,使得為偶數(shù)

這樣的的取法是唯一的,且確定了的值

從而數(shù)列唯一地對應(yīng)著一個滿足條件的

所以滿足條件的數(shù)列共有

下面化簡

設(shè)

兩展開式右邊乘積中的常數(shù)項恰好為

因為,又的系數(shù)為

所以

所以滿足條件的數(shù)列共有

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】一個袋子中有5個大小相同的球,其中3個白球與2個黑球,現(xiàn)從袋中任意取出一個球,取出后不放回,然后再從袋中任意取出一個球,則第一次為白球、第二次為黑球的概率為(  )

A B C D

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在《九章算術(shù)》中,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在鱉臑中,平面,,且,過點分別作于點,于點,連結(jié),當的面積最大時,__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】材料一:2018年,全國逾半省份將從秋季入學的高一年級開始實行新的學業(yè)水平考試和高考制度.所有省級行政區(qū)域均突破文理界限,由學生跨文理選科,均設(shè) 置“”的考試科目.前一個“3”為必考科目,為統(tǒng)一高考科目語文、數(shù)學、外語.除個別省級行政區(qū)域仍執(zhí)行教育部委托的分省命題任務(wù)外,絕大部分省級行政區(qū)域均由教育部考試中心統(tǒng)一命題;后一個“3”為高中學業(yè)水平考試(簡稱“學考”)選考科目,由各省級行政區(qū)域自主命題.材料二:20194月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發(fā)布高考綜合改革實施方案,方案決定從2018年秋季入學的高中一年級學生開始實施高考綜合改革.考生總成績由全國統(tǒng)一高考的語文、數(shù)學、外語3個科目成績和考生選擇的3科普通高中學業(yè)水平選擇性考試科目成績組成,滿分為750分.即通常所說的“”模式,所謂“”,即“3”是三門主科,分別是語文、數(shù)學、外語,這三門科目是必選的.“1”指的是要在物理、歷史里選一門,按原始分計入成績.“2”指考生要在生物、化學、思想政治、地理4門中選擇2門.但是這幾門科目不以原始分計入成績,而是等級賦分.等級賦分指的是把考生的原始成績根據(jù)人數(shù)的比例分為、、五個等級,五個等級分別對應(yīng)著相應(yīng)的分數(shù)區(qū)間,然后再用公式換算,轉(zhuǎn)換得出分數(shù).

1)若按照“”模式選科,求選出的六科中含有“語文,數(shù)學,外語,物理,化學”的概率.

2)某教育部門為了調(diào)查學生語數(shù)外三科成績與選科之間的關(guān)系,現(xiàn)從當?shù)夭煌瑢哟蔚膶W校中抽取高一學生2500名參加語數(shù)外的網(wǎng)絡(luò)測試,滿分450分,并給前400名頒發(fā)榮譽證書,假設(shè)該次網(wǎng)絡(luò)測試成績服從正態(tài)分布,且滿分為450分;

①考生甲得知他的成績?yōu)?/span>270分,考試后不久了解到如下情況:“此次測試平均成績?yōu)?/span>171分,351分以上共有57人”,問甲能否獲得榮譽證書,請說明理由;

②考生丙得知他的實際成績?yōu)?/span>430分,而考生乙告訴考生丙:“這次測試平均成績?yōu)?/span>201分,351分以上共有57人”,請結(jié)合統(tǒng)計學知識幫助丙同學辨別乙同學 信息的真?zhèn)危?/span>

附:;;.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡稱“創(chuàng)城”)活動中,教委對本區(qū)四所高中學校按各校人數(shù)分層抽樣,隨機抽查了100人,將調(diào)查情況進行整理后制成下表:

學校

抽查人數(shù)

50

15

10

25

“創(chuàng)城”活動中參與的人數(shù)

40

10

9

15

(注:參與率是指:一所學!皠(chuàng)城”活動中參與的人數(shù)與被抽查人數(shù)的比值)假設(shè)每名高中學生是否參與”創(chuàng)城”活動是相互獨立的.

(1)若該區(qū)共2000名高中學生,估計學校參與“創(chuàng)城”活動的人數(shù);

(2)在隨機抽查的100名高中學生中,隨機抽取1名學生,求恰好該生沒有參與“創(chuàng)城”活動的概率;

(3)在上表中從兩校沒有參與“創(chuàng)城”活動的同學中隨機抽取2人,求恰好兩校各有1人沒有參與“創(chuàng)城”活動的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,平面,底面為正方形,且.若四棱錐的每個頂點都在球的球面上,則球的表面積的最小值為_____;當四棱錐的體積取得最大值時,二面角的正切值為_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓的離心率為,過橢圓右焦點作兩條互相垂直的弦.當直線的斜率為0時,.

1)求橢圓的方程;

2)試探究是否為定值?若是,證明你的結(jié)論;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,是棱上動點,下列說法正確的是( .

A.對任意動點,在平面內(nèi)存在與平面平行的直線

B.對任意動點,在平面內(nèi)存在與平面垂直的直線

C.當點運動到的過程中,與平面所成的角變大

D.當點運動到的過程中,點到平面的距離逐漸變小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=(1+xt1的定義域為(﹣1,+∞),其中實數(shù)t滿足t≠0t≠1.直線lygx)是fx)的圖象在x0處的切線.

1)求l的方程:ygx);

2)若fxgx)恒成立,試確定t的取值范圍;

3)若a1,a2∈(0,1),求證: .注:當α為實數(shù)時,有求導(dǎo)公式(xααxα1.

查看答案和解析>>

同步練習冊答案