有4個(gè)不同的小球,4個(gè)不同的盒子,現(xiàn)要把球全部放進(jìn)盒子內(nèi),恰有2個(gè)盒子不放球,其有
 
種方法.(用數(shù)字回答)
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專(zhuān)題:排列組合
分析:先分類(lèi),把四個(gè)小球先分成兩組,每組兩個(gè)小球,或者是把四個(gè)小球分成兩組,每組一個(gè)和三個(gè),分完小組后再進(jìn)行排列,從4個(gè)盒中選兩個(gè)位置排列,得到結(jié)果.
解答: 解:完成這件事情有兩類(lèi)辦法:第一類(lèi),一個(gè)盒子放3個(gè)小球,一個(gè)盒子放1個(gè)小球,兩個(gè)盒子不放小球有C41•C43•C31=48種方法;
第二類(lèi),有兩個(gè)盒子各放2個(gè)小球,另兩個(gè)盒子不放小球有C42•C42=36種方法;
由分類(lèi)計(jì)數(shù)原理,共有48+36=84種放法.
點(diǎn)評(píng):本題考查分步、分類(lèi)計(jì)數(shù)原理,解題的過(guò)程中注意這種有條件的排列要分兩步走,先選元素再排列.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2+ax)ex在(0,1)上單調(diào)遞減.
(Ⅰ)求a的取值范圍;
(Ⅱ)令g(x)=[(a+3)x+a2+2a-1]ex,h(x)=f′(x)-g(x),求h(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC是邊長(zhǎng)為2的正三角形,P、Q依次是AB、AC邊上的點(diǎn),且線段PQ將△ABC分成面積相等的兩部分.設(shè)AP=x,AQ=t,PQ=y,求:
(1)t關(guān)于x的函數(shù)關(guān)系式;
(2)y關(guān)于x的函數(shù)關(guān)系式;
(3)y的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的首項(xiàng)a1=1,且a2是a1和a6的等比中項(xiàng),那么公差d=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,在我市某普通中學(xué)高中生中隨機(jī)抽取200名學(xué)生,得到如下2×2列聯(lián)表:
喜歡數(shù)學(xué)課 不喜歡數(shù)學(xué)課 合計(jì)
30 60 90
20 90 110
合計(jì) 50 150 200
經(jīng)計(jì)算K2≈6.06,根據(jù)獨(dú)立性檢驗(yàn)的基本思想,約有
 
(填百分?jǐn)?shù))的把握認(rèn)為“性別與喜歡數(shù)學(xué)課之間有關(guān)系”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=sin
1
2
ωx在(0,π)內(nèi)是減函數(shù),則ω的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,圓C的方程為ρ=1,直線l的方程為ρsin(θ+
π
4
)=
2
,則圓心C到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-x2+4x+7在x∈[-3,5]上的最大值為
 
,最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,若復(fù)數(shù)z=1+i,則|z|的值為(  )
A、
2
B、2
C、
3
D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案