(本小題共14分)已知.
(1)求函數(shù)上的最小值;
(2)已知對任意恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:對一切,都有成立.
(本小題共14分)
解:(1), ………… 1分
當(dāng)單調(diào)遞減,當(dāng)單調(diào)遞增 …2分
①當(dāng)時(shí),
; ………………… 3分
②當(dāng),即時(shí),上單調(diào)遞增,
; ………………… 4分
所以 ………………… 5分
(2)在兩邊取對數(shù)得, ……………… 6分
由于,所以, ………………… 7分
令,由(1)可知,當(dāng)時(shí), 8分
所以,即。 ………………… 9分
(3)問題等價(jià)于證明, ………………… 10分
由(1)可知的最小值是,當(dāng)且僅當(dāng)時(shí)取到, 11分
設(shè),則, ………………… 12分
易知,當(dāng)且僅當(dāng)時(shí)取到, ………………… 13分
從而對一切,都有成立 。 ………………… 14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年北京卷文)(本小題共14分)
已知的頂點(diǎn)在橢圓上,在直線上,且.
(Ⅰ)當(dāng)邊通過坐標(biāo)原點(diǎn)時(shí),求的長及的面積;
(Ⅱ)當(dāng),且斜邊的長最大時(shí),求所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共14分)
已知雙曲線的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線的方程;(Ⅱ)設(shè)直線是圓上動(dòng)點(diǎn)處的切線,與雙曲線交于不同的兩點(diǎn),證明的大小為定值..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年北京市宣武區(qū)高三第二次模擬考試數(shù)學(xué)(理) 題型:解答題
(本小題共14分)
已知,動(dòng)點(diǎn)到定點(diǎn)的距離比到定直線的距離小.
(I)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)是軌跡上異于原點(diǎn)的兩個(gè)不同點(diǎn),,求面積的最小值;
(Ⅲ)在軌跡上是否存在兩點(diǎn)關(guān)于直線對稱?若存在,求出直線 的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年普通高中招生考試北京市高考理科數(shù)學(xué) 題型:解答題
((本小題共14分)
已知橢圓.過點(diǎn)(m,0)作圓的切線l交橢圓G于A,B兩點(diǎn).
(I)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(II)將表示為m的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市豐臺區(qū)高三下學(xué)期統(tǒng)一練習(xí)數(shù)學(xué)理卷 題型:解答題
(本小題共14分)
已知點(diǎn),,動(dòng)點(diǎn)P滿足,記動(dòng)點(diǎn)P的軌跡為W.
(Ⅰ)求W的方程;
(Ⅱ)直線與曲線W交于不同的兩點(diǎn)C,D,若存在點(diǎn),使得成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com