設f(x)是定義域為R,且最小正周期為
5
2
π
的函數(shù),并且f(x)=
sinx(0≤x<π)
cosx(-π<x<0)
,則f(-
11
4
π)
=
 
分析:由已知函數(shù)的周期為
2
可得f(-
11π
4
)=f(-
1
4
π)
,從而可求
解答:解:由題意函數(shù)的周期為
2
可得f(-
11π
4
)=f(-
1
4
π)
=cos(-
π
4
)=
2
2

故答案為:
2
2
點評:本題主要考查了三角函數(shù)的值的求解及分段函數(shù)的解析式的應用,解題的關鍵是由函數(shù)的周期為
2
,可得f(-
11π
4
)=f(-
1
4
π)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)是定義域為(-∞,0)∪(0,+∞)上的奇函數(shù)且在(-∞,0)上為增函數(shù).
(1)若m•n<0,m+n≤0,求證:f(m)+f(n)≤0;
(2)若f(1)=0,解關于x的不等式f(x2-2x-2)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義域為R,最小正周期為
2
的函數(shù),且在區(qū)間(-π,π)上的表達式為f(x)=
sinx    0≤x<π
cosx    -π<x<0
,則f(-
21π
4
)
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義域為R,最小正周期為
2
的周期函數(shù),若f(x)=
cosx(-
π
2
≤x≤0)
sinx(0≤x≤π)
,則f(-
21π
4
)
=
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義域為R,又f(x+3)=f(x),當x<1時,f(x)=cosπx,則f(
1
3
)+f(
15
4
)
值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義域為(-∞,0)∪(0,+∞)的奇函數(shù),且它在區(qū)間(-∞,0)上單調(diào)增.
(1)用定義證明:f(x)在(0,+∞)上的單調(diào)性;
(2)若mn<0且m+n<0,試判斷f(m)+f(n)的符號;
(3)若f(1)=0解關于x的不等式f[loga(1-x2)+1]>0.

查看答案和解析>>

同步練習冊答案