【題目】在△ABC中,a、b分別是角A、B所對的邊,條件“a<b”是使“cosA>cosB”成立的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

【答案】C
【解析】解:(1.)∵a、b分別是角A、B所對的邊,且a<b,∴0<∠A<∠B<π. 而在(0,π)上,函數(shù)f(x)=cosx為減函數(shù).
∴cosA>cosB成立.
(2.)在(0,π)上,函數(shù)f(x)=cosx為減函數(shù),0<∠A,∠B<π,cosA>cosB,
∴∠A<∠B,從而a<b.
所以前者是后者的充要條件.
故選C.
【考點精析】本題主要考查了余弦函數(shù)的單調(diào)性的相關(guān)知識點,需要掌握余弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點F為拋物線E:y2=2px(p>0)的焦點,點A(3,m)在拋物線E上,且|AF|=4.

(1)求拋物線E的方程;
(2)已知點G(﹣1,0),延長AF交拋物線E于點B,證明:以點F為圓心且與直線GA相切的圓,必與直線GB相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)n∈N*時, ,Tn= + + +…+ . (Ⅰ)求S1 , S2 , T1 , T2;
(Ⅱ)猜想Sn與Tn的關(guān)系,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)在其定義域上既是奇函數(shù)又是減函數(shù)的是(
A.f(x)=2x
B.f(x)=xsinx
C.
D.f(x)=﹣x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一批數(shù)量很大的產(chǎn)品,其次品率是10%.
(1)連續(xù)抽取兩件產(chǎn)品,求兩件產(chǎn)品均為正品的概率;
(2)對這批產(chǎn)品進行抽查,每次抽出一件,如果抽出次品,則抽查終止,否則繼續(xù)抽查,直到抽出次品,但抽查次數(shù)最多不超過4次,求抽查次數(shù)ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工科院校對A,B兩個專業(yè)的男女生人數(shù)進行調(diào)查,得到如下的列聯(lián)表:

專業(yè)A

專業(yè)B

總計

女生

12

4

16

男生

38

46

84

總計

50

50

100

(Ⅰ)從B專業(yè)的女生中隨機抽取2名女生參加某項活動,其中女生甲被選到的概率是多少?
(Ⅱ)能否在犯錯誤的概率不超過0.05的前提下,認(rèn)為工科院校中“性別”與“專業(yè)”有關(guān)系呢?
注:

P(K2≥k)

0.25

0.15

0.10

0.025

k

1.323

2.072

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A=[﹣1,3],B=[m,m+6](m∈R).
(1)當(dāng)m=2時,求A∩(RB);
(2)若A∪B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x|x﹣a|+x.
(1)當(dāng)a=3時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求所有的實數(shù)a,使得對任意x∈[1,4],函數(shù)f(x)的圖象恒在函數(shù)g(x)=x+4圖象的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),若f(x)= ,則關(guān)于x的方程f(x)+a=0(0<a<1)的所有根之和為

查看答案和解析>>

同步練習(xí)冊答案