(本題滿分12分) 設(shè)函數(shù).
(Ⅰ)判斷能否為函數(shù)的極值點(diǎn),并說(shuō)明理由;
(Ⅱ)若存在,使得定義在上的函數(shù)處取得最大值,求實(shí)數(shù)的最大值.
(Ⅰ)當(dāng)時(shí),的極小值點(diǎn);(Ⅱ) 

試題分析:(Ⅰ),令,得;   2’
當(dāng)時(shí),,于是單調(diào)遞增,在單調(diào)遞減,
單調(diào)遞增.
故當(dāng)時(shí),的極小值點(diǎn)                  2’
(Ⅱ).
由題意,當(dāng)時(shí),恒成立              2’
易得,令,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011303275484.png" style="vertical-align:middle;" />必然在端點(diǎn)處取得最大值,即               4’
,即,解得, ,
所以的最大值為 2’
點(diǎn)評(píng):導(dǎo)數(shù)本身是個(gè)解決問(wèn)題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實(shí)際問(wèn)題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請(qǐng)注意歸納常規(guī)方法和常見(jiàn)注意點(diǎn),綜合考查運(yùn)用知識(shí)分析和解決問(wèn)題的能力,中等題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)內(nèi)有意義.對(duì)于給定的正數(shù),已知函數(shù)
,取函數(shù).若對(duì)任意的,恒有,則的最小值為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,函數(shù),若.
(1)求的值并求曲線在點(diǎn)處的切線方程;
(2)設(shè),求上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若上的最大值為,求實(shí)數(shù)的值;
(Ⅱ)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,設(shè),對(duì)任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn),使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

的極大值點(diǎn)是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù) 有(   )    
A.極小值-1,極大值1 B.極小值-2,極大值3
C.極小值-1,極大值3D.極小值-2,極大值2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù))的圖象為曲線
(Ⅰ)求曲線上任意一點(diǎn)處的切線的斜率的取值范圍;
(Ⅱ)若曲線上存在兩點(diǎn)處的切線互相垂直,求其中一條切線與曲線的切點(diǎn)的橫坐標(biāo)的取值范圍;
(Ⅲ)試問(wèn):是否存在一條直線與曲線C同時(shí)切于兩個(gè)不同點(diǎn)?如果存在,求出符合條件的所有直線方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)直線x="t" 與函數(shù),  的圖像分別交于點(diǎn)M,N,則當(dāng)為最小時(shí)t的值為
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的最大值為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案