【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù),a∈R).在以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.
(1)若點A(0,4)在直線l上,求直線l的極坐標(biāo)方程;
(2)已知a>0,若點P在直線l上,點Q在曲線C上,若|PQ|最小值為,求a的值.
【答案】(1) (2)
【解析】
(1)將直線l參數(shù)方程轉(zhuǎn)化為直角坐標(biāo)方程,再將A點坐標(biāo)代入即可求出a值,進(jìn)而求出極坐標(biāo)方程.
(2)設(shè)直線m平行于直線l,則直線m與曲線C的切點到直線l的距離即為|PQ|最小值,計算求解即可.
(1)由直線l的參數(shù)方程為 (t為參數(shù),a∈R)可得,
直線l的直角坐標(biāo)方程為,
因為點A(0,4)在直線l上,代入方程,得
則直線l的直角坐標(biāo)方程為,
將代入,得
即直線l的極坐標(biāo)方程為
(2)將曲線C的極坐標(biāo)方程
化為直角坐標(biāo)方程,得,
設(shè)直線,
則直線m與曲線C的切點(靠近直線l)到直線的距離即為|PQ|最小值,
將直線m代入曲線C中,得,
由相切,得,即(舍負(fù)),
由于直線m與直線l的距離為,
則,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()經(jīng)過點,離心率為,,分別為橢圓的左、右焦點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點()在橢圓C上,求證;直線與直線關(guān)于直線l:對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在世界讀書日期間,某地區(qū)調(diào)查組對居民閱讀情況進(jìn)行了調(diào)查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.
(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān)?
城鎮(zhèn)居民 | 農(nóng)村居民 | 合計 | |
經(jīng)常閱讀 | 100 | 30 | |
不經(jīng)常閱讀 | |||
合計 | 200 |
(2)調(diào)查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出7人,參加一次閱讀交流活動,若活動主辦方從這7位居民中隨機(jī)選取2人作交流發(fā)言,求被選中的2位居民都是經(jīng)常閱讀居民的概率.
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究因子對某物種繁殖的影響,某生物研究所開展了系列研究,研究過程中,選取了生長狀況相同的三組樣本分別標(biāo)記為組,組,組進(jìn)行繁殖實驗,已知每組均繁殖10個個體,其中組正常培養(yǎng),組,組均在食物中添加因子,一個月后統(tǒng)計存活率,已知組存活7個個體,組存活8個個體,組存活5個個體,現(xiàn)將這20個存活個體集中,并從中任取3個個體
(1)求抽取的3個存活個體中有來自同一組的概率
(2)記為所抽取的3個個體中來自組的個體的數(shù)量,求的分布列和數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)g(x)=f(x)﹣lnx有2個不同的極值點x1,x2(x1<x2),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統(tǒng)計如圖中的條形圖,已知年的就醫(yī)費用比年的就醫(yī)費用增加了元,則該人年的儲畜費用為( )
A.元B.元C.元D.元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)判斷并說明函數(shù)的零點個數(shù).若函數(shù)所有零點均在區(qū)間內(nèi),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是拋物線的頂點,,是上的兩個動點,且.
(1)判斷點是否在直線上?說明理由;
(2)設(shè)點是△的外接圓的圓心,求點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com