已知sinx+cosx=-1,則sin2009x+cos2011x的值為( )
A.0
B.1
C.-1
D.±1
【答案】分析:直接解出x,然后求表達(dá)式sin2009x+cos2011x的值.
解答:解:,k∈Z
所以或2kπ-π,則sinx=-1,cosx=0或sinx=0,cosx=-1,
故sin2009x+cos2011x=(-1)2009+02011=-1或sin2009x+cos2011x=02009+(-1)2011=-1.
故選C.
點(diǎn)評(píng):本題考查了兩角和與差的正弦函數(shù),象限角、軸線角,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
OM
=(cosα,sinα),
ON
=(cosx,sinx),
PQ
=(cosx,-sinx+
4
5cosα
)

(1)當(dāng)cosα=
4
5sinx
時(shí),求函數(shù)y=
ON
PQ
的最小正周期;
(2)當(dāng)
OM
ON
=
12
13
OM
PQ
,α-x,α+x都是銳角時(shí),求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinx=sinα+cosα,cosx=sinαcosα,則cos2x=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知sinx+cosx=
1
5
,x∈(0,x)
,求tanx的值.
(2)已知0<α<
π
2
<β<π
,cosα=
3
5
,sin(α+β)=
5
13
,求sinα和cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知sinx+cosx=-
1
5
(0<x<π),求tanx的值;
(2)已知角α終邊上一點(diǎn)P(-4,3),求
cos(
π
2
+α)tan(π+α)sin(-π-α)
cos(
11π
2
-α)sin(
2
+α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinx=2cosx,則
3sin(
2
+x)-cos(
π
2
+x)
5cos(π+x)-sin(-x)
的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案