6.某人要利用無人機測量河流的寬度,如圖,從無人機A處測得正前方河流的兩岸B,C的俯角分別為75°,30°,此時無人機的高是60米,則河流的寬度BC等于(  )
A.$240\sqrt{3}$米B.$180(\sqrt{2}-1)$米C.$120(\sqrt{3}-1)$米D.$30(\sqrt{3}+1)$米

分析 由題意畫出圖形,由兩角差的正切求出15°的正切值,然后通過求解兩個直角三角形得到DC和DB的長度,作差后可得答案.

解答 解:如圖
由圖可知,∠DAB=15°,
∵tan15°=tan(45°-30°)=2-$\sqrt{3}$.
在Rt△ADB中,又AD=60,
∴DB=AD•tan15°=60×(2-$\sqrt{3}$)=120-60$\sqrt{3}$.
在Rt△ADC中,∠DAC=60°,AD=60,
∴DC=AD•tan60°=60$\sqrt{3}$.
∴BC=DC-DB=60$\sqrt{3}$-(120-60$\sqrt{3}$)=120($\sqrt{3}$-1)(m).
∴河流的寬度BC等于120($\sqrt{3}$-1)m.
故選:C.

點評 本題給出實際應用問題,求河流在B、C兩地的寬度,著重考查了三角函數(shù)的定義、正余弦定理解三角形的知識,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.設實數(shù)x,y滿足條件$\left\{\begin{array}{l}x-y+2≥0\\ 2x-y-4≤0\\ x≥0,y≥0\end{array}\right.$,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為12,則$\frac{3}{a}+\frac{4}$的最小值為$\frac{49}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知集合A={y|y=x2+1,x∈R},B={y|y=x+1,x∈R},則A∩B=( 。
A.{1,2}B.{y|y=1或2}
C.$\{(x,y)|\left\{{\begin{array}{l}{x=0}\\{y=1}\end{array}}\right.$或$\left\{{\begin{array}{l}{x=1}\\{y=2}\end{array}}\right.$}D.{y|y≥1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設函數(shù)f(x)=x3[ln(ex+1)+ax]是奇函數(shù),那么a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知二次函數(shù)f(x)=ax2+2x+c的對稱軸為x=1,g(x)=x+$\frac{1}{x}$(x>0).
(1)求函數(shù)g(x)的最小值及取得最小值時x的值;
(2)試確定c的取值范圍,使g(x)-f(x)=0至少有一個實根;
(3)若F(x)=-f(x)+4x+c,存在實數(shù)t,對任意x∈[1,m],使F(x+t)≤3x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.某公司10個部門在公司20周年慶典中獲獎人數(shù)如莖葉圖所示,則這10個部門獲獎人數(shù)的中位數(shù)和眾數(shù)分別為( 。
A.10,13B.7,13C.10,4D.13,10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.將函數(shù)f(x)=$6sin({2x-\frac{π}{3}})$的圖象向右平移$\frac{π}{12}$個單位后得到g(x)的圖象,則$g({\frac{π}{12}})$=$-3\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)y=loga(x-3)+1( a>0,a≠1)的圖象恒過定點坐標(4,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)y=f(x)是定義在R上的增函數(shù),函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱.若對任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,求x2+y2的取值范圍是( 。
A.(3,7)B.(9,25)C.(13,49)D.(9,49)

查看答案和解析>>

同步練習冊答案