設(shè)拋物線C:y2=2px(p>0)焦點(diǎn)為F,其準(zhǔn)線與x軸的交點(diǎn)為Q,過點(diǎn)F作直線交拋物線C于A、B兩點(diǎn),若∠QBF=90°,則|AF|-|BF|=
2p
2p
分析:先假設(shè)方程與拋物線方程聯(lián)立,借助于求出點(diǎn)A的坐標(biāo),從而求出線段長,進(jìn)而求出|AF|-|BF|.
解答:解:設(shè)AB方程為:y=k(x-
p
2
)(假設(shè)k存在),與拋物線y2=2px(p>0)聯(lián)立得k2(x2-px+
p2
4
)=2px,
即k2x2-(k2+2)px+
(kp)2
4
=0
設(shè)兩交點(diǎn)為A(x2,y2),B(x1,y1),∠QBF=90°即(x1-
p
2
)(x1+
p
2
)+y12=0,
∴x12+y12=
p2
4
,∴x12+2px1-
p2
4
=0,即(x1+p)2=
5
4
p2,解得x1=
-2+
5
2
p,
∴B(
-2+
5
2
p,
-2+
5
p),|BQ|=
-1+
5
2
p,|BF|=
-1+
5
2
p,
∵x1x2=
p2
4
,x1=
-2+
5
2
p,
∴x2=
2+
5
2
p
∴A(
2+
5
2
p,-
2+
5
p),|AF|=
3+
5
2
p,
∴|AF|-|BF|=2p,
故答案為:2p.
點(diǎn)評(píng):直線與曲線相交問題,通常是聯(lián)立方程組成方程組,從而可求相關(guān)問題.新課標(biāo)中,橢圓通常作為壓軸題放在解答題中,因此填空題考查的一般都是雙曲線和拋物線的定義,比較新穎同時(shí)難度不是很高,符合高考命題的要求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn),若△BDF為等邊三角形,△ABD的面積為6,則p的值為
3
3
,圓F的方程為
(x-
3
2
)2+y2=12
(x-
3
2
)2+y2=12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)一模)設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線與拋物線交于A、B兩點(diǎn).
(1)若p=2,求線段AF中點(diǎn)M的軌跡方程;
(2)若直線AB的方向向量為
n
=(1,2)
,當(dāng)焦點(diǎn)為F(
1
2
,0)
時(shí),求△OAB的面積;
(3)若M是拋物線C準(zhǔn)線上的點(diǎn),求證:直線MA、MF、MB的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•長寧區(qū)二模)設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過F且垂直于x軸的直線與拋物線交于P1,P2兩點(diǎn),已知|P1P2|=8.
(1)求拋物線C的方程;
(2)過點(diǎn)M(3,0)作方向向量為
d
=(1,a)
的直線與曲線C相交于A,B兩點(diǎn),求△FAB的面積S(a)并求其值域;
(3)設(shè)m>0,過點(diǎn)M(m,0)作直線與曲線C相交于A,B兩點(diǎn),問是否存在實(shí)數(shù)m使∠AFB為鈍角?若存在,請(qǐng)求出m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C:y2=3px(p>0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若以MF為直徑的圓過點(diǎn)(0,2),則C的方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃浦區(qū)二模)設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過點(diǎn)F的動(dòng)直線l交拋物線C于點(diǎn)A(x1,y1),B(x2,y2)且y1y2=-4.
(1)求拋物線C的方程;
(2)若
OE
=2(
OA
+
OB
)
(O為坐標(biāo)原點(diǎn)),且點(diǎn)E在拋物線C上,求直線l傾斜角;
(3)若點(diǎn)M是拋物線C的準(zhǔn)線上的一點(diǎn),直線MF,MA,MB的斜率分別為k0,k1,k2.求證:當(dāng)k0為定值時(shí),k1+k2也為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案