已知向量數(shù)學(xué)公式=(sin(A-B),sin(數(shù)學(xué)公式-A)),數(shù)學(xué)公式=(1,2sinB),數(shù)學(xué)公式數(shù)學(xué)公式=-sin2C,其中A,B,C分別為△ABC的三邊a,b,c所對的角.
(Ⅰ)求角C的大。
(Ⅱ)若sinA+sinB=2sinC,且S△ABC=數(shù)學(xué)公式,求邊c的長.

解:(I)∵向量=(sin(A-B),sin(-A)),=(1,2sinB),
=sin(A-B)+2sin(-A)sinB=-sin2C,
即sinAcosB-cosAsinB+2cosAsinB=sin2C,
可得sin(A+B)=-2sinCcosC
∵A+B=π-C,可得sin(A+B)=sinC
∴sinC=-2sinCcosC,結(jié)合sinC>0可得cosC=-
∵C∈(0,π),∴C=,即角C的大小為;
(II)∵S△ABC=absinC=,且C=,∴ab=4
由余弦定理,得c2=a2+b2-2abcos=(a+b)2-ab
∵sinA+sinB=2sinC,∴根據(jù)正弦定理,得a+b=2c,
由此可得:c2=(a+b)2-ab=4c2-4,得3c2=4,解之得c=
分析:(I)根據(jù)平面向量的坐標(biāo)運(yùn)算公式,可得sin(A-B)+2sin(-A)sinB=-sin2C,利用誘導(dǎo)公式和兩角和與差的正弦公式化簡得sin(A+B)=-2sinCcosC,結(jié)合sin(A+B)=sinC算出cosC=-,從而得到角C的大小為
(II)根據(jù)正弦定理的面積公式,結(jié)合已知條件算出ab=4,再利用余弦定理算出c2=(a+b)2-ab.而由sinA+sinB=2sinC結(jié)合正弦定理得a+b=2c,從而得到關(guān)于c的方程,解之即可得到邊c=
點(diǎn)評(píng):本題給出向量含有三角函數(shù)的坐標(biāo)形式,在已知數(shù)量積的情況下求角C的大小并依此解三角形,著重考查了平面向量數(shù)量積運(yùn)算公式和運(yùn)用正余弦定理解三角形等知識(shí),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinβ,1),
b
=(2,-1)且
a
b
,
π
2
<β<π,則β等于
5
6
π
5
6
π
弧度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinωx,-cosωx),
b
=(
3
cosωx,cosωx)(ω>0),函數(shù)f(x)=
a
b
+
1
2
,且函數(shù)f(x)=
3
sinωxcosωx-cos2ωx+
1
2
的圖象中任意兩相鄰對稱軸間的距離為π.
(1)求ω的值;
(2)已知在△ABC中,角A,B,C所對的邊分別為a,b,c,f(C)=
1
2
,且c=2
19
,△ABC的面積S=2
3
,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinθ,cosθ-2sinθ),
b
=(1,2)
(1)若
a
b
,求tanθ的值;
(2)若
a
b
,且θ為第Ⅲ象限角,求sinθ和cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•德州二模)已知向量
a
=(sinα,1),
b
=(2,2cosα-
2
),(
π
2
<α<π
),若
a
b
,則sin(α-
π
4
)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinθ,1),
b
=(cosθ,
3
),且
a
b
,其中θ∈(0,
π
2
).
(1)求θ的值;
(2)若sin(x-θ)=
3
5
,0<x<
π
2
,求cosx的值.

查看答案和解析>>

同步練習(xí)冊答案